170
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An Experimental Study on Combustion in Mesoscale Coaxial Swirling Burner Arrays

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1097-1118 | Received 25 Dec 2021, Accepted 04 Aug 2022, Published online: 10 Aug 2022

References

  • Abdelhafez, A., M. Hussain, M. A. Nemitallah, M. A. Habib, and A. Ali. 2021. Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines. Energy 228:120561. doi:10.1016/j.energy.2021.120561.
  • Bhatia, P., V. R. Katta, S. S. Krishnan, Y. Zheng, P. B. Sunderland, and J. P. Gore. 2012. Simulations of normal and inverse laminar diffusion flames under oxygen enhancement and gravity variation. Combust. Theory Modelling 16 (5):774–98. doi:10.1080/13647830.2012.658440.
  • Boushaki, T., N. Merlo, S. de Persis, C. Chauveau, and I. Gökalp. 2019. Experimental investigation of CH4-air-O2 turbulent swirling flames by Stereo-PIV. Exp. Therm. Fluid Sci 106:87–99. doi:10.1016/j.expthermflusci.2019.04.026.
  • Chen, R.-H., J. F. Driscoll, J. Kelly, M. Namazian, and R. W. Schefer. 1990. A comparison of bluff-body and swirl-stabilized flames. Combust. Sci. Technol 71 (4–6):197–217.
  • Choi, J., R. Rajasegar, T. Lee, and J. Yoo. 2020. Development and characterization of swirl-stabilized diffusion mesoscale burner array. Appl. Therm. Eng. 175:115373. doi:10.1016/j.applthermaleng.2020.115373.
  • Choi, J., R. Rajasegar, C. M. Mitsingas, Q. Liu, T. Lee, and J. Yoo. 2020. Effect of flame interaction on swirl-stabilized mesoscale burner array performance. Energy 192:116661. doi:10.1016/j.energy.2019.116661.
  • Cozzi, F., and A. Coghe. 2012. Effect of air staging on a coaxial swirled natural gas flame. Exp. Therm. Fluid Sci 43:32–39. doi:10.1016/j.expthermflusci.2012.04.002.
  • Degenève, A., R. Vicquelin, C. Mirat, B. Labegorre, P. Jourdaine, J. Caudal, and T. Schuller. 2019. Scaling relations for the length of coaxial oxy-flames with and without swirl. Proc. Combust. Inst 37 (4):4563–70. doi:10.1016/j.proci.2018.06.032.
  • Elbaz, A. M., and W. L. Roberts. 2014. Flame structure of methane inverse diffusion flame. Exp. Therm. Fluid Sci 56:23–32. doi:10.1016/j.expthermflusci.2013.11.011.
  • Evdokimov, O. A. 2019. The structure of coaxial buoyant jets with swirl and combustion. Int. J. Energy Clean Environ 20 (4):339–50. doi:10.1615/InterJEnerCleanEnv.2019033297.
  • Evdokimov, O. A., A. I. Gur’Yanov, S. A. Piralishvili, S. V. Veretennikov, and M. M. Gur’Yanova. 2018. Special features of the formation of diffusion reacting jets in a swirled air flow. J. Eng. Phys. Thermophys 91 (5):1267–73. doi:10.1007/s10891-018-1857-1.
  • Evdokimov, O. A., A. I. Guryanov, and S. V. Veretennikov. 2019. Numerical simulation of coaxial swirled lifted propane-air flame under buoyancy conditions. Journal of Physics: Conference Series, 1359, 012062. doi:10.1088/1742-6596/1359/1/012062.
  • Feikema, D., R. Chen, and J. Driscoll. 1991. Blowout of nonpremixed flames: maximum coaxial air velocities achievable, with and without swirl☆. Combust. Flame 86 (4):347–58. doi:10.1016/0010-2180(91)90128-X.
  • Guryanov, A. I., O. A. Evdokimov, S. V. Veretennikov, and M. M. Guryanova. 2017. Experimental investigation of premixed air–fuel mixtures and of the combustion specifics of diffusion fuel jets. Int. J. Energy Clean Environ 18 (4):335–48. doi:10.1615/InterJEnerCleanEnv.2018021223.
  • Guryanov, A. I., O. A. Evdokimov, S. V. Veretennikov, and D. A. Prokhorov. 2022. A development and numerical study of a high-pressure gas turbine combustion chamber based on mesoscale co-axial swirling jets. Int. J. Energy Clean Environ 23 (3):55–76. doi:10.1615/InterJEnerCleanEnv.2022041397.
  • Hussain, M., A. Abdelhafez, M. A. Nemitallah, A. A. Araoye, R. Ben-Mansour, and M. A. Habib. 2020. A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines. Appl. Energy 279:115818. doi:10.1016/j.apenergy.2020.115818.
  • Kang, H., T. Lee, U. Jin, and K. T. Kim. 2020. Experimental investigation of combustion instabilities of a mesoscale multinozzle array in a lean-premixed combustor. Proceedings of the Combustion Institute, S1540748920301590. doi:10.1016/j.proci.2020.06.099.
  • Kuwana, K., S. Kato, A. Kosugi, T. Hirasawa, and Y. Nakamura. 2016. Experimental and theoretical study on the interaction between two identical micro-slot diffusion flames: burner pitch effects. Combust. Flame 165:346–53. doi:10.1016/j.combustflame.2015.12.017.
  • Kwong, W. Y., and A. M. Steinberg. 2020. Effect of internozzle spacing on lean blow-off of a linear multinozzle combustor. J. Propuls. Power 36 (4):540–50. doi:10.2514/1.B37713.
  • Lee, B.-J., J.-S. Kim, and S. Lee. 2004. Enhancement of blowout limit by the interaction of multiple non-premixed jet flames. Combust. Sci. Technol 176 (4):481–97. doi:10.1080/00102200490276700.
  • Lee, T., J. Park, D. Han, and K. T. Kim. 2019. The dynamics of multiple interacting swirl-stabilized flames in a lean-premixed gas turbine combustor. Proc. Combust. Inst 37 (4):5137–45. doi:10.1016/j.proci.2018.05.110.
  • Lee, J. G., and D. A. Santavicca. 2003. Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propuls. Power 19 (5):735–50. doi:10.2514/2.6191.
  • Li, H., X. Chen, C.-M. Shu, Q. Wang, and Y. Zhang. 2019. Experimental and numerical investigation of the influence of laterally sprayed water mist on a methane-air jet flame. Chem. Eng. J 356:554–69. doi:10.1016/j.cej.2018.09.051.
  • Liu, W., B. Ge, Y. Tian, Y. Yuan, S. Zang, S. Weng, D. Zhang, and Y. Cui. 2014. Experimental and numerical investigations of low-swirl multi-nozzle combustion in a lean premixed combustor. Proceedings of the ASME Turbo Expo. GT2014–25612. doi:10.1115/GT2014-25612.
  • Liu, W., B. Ge, Y. Tian, S. Zang, and S. Weng. 2017. Experimental study on instability characteristics of low-swirl flames in a multinozzle combustor with different swirling arrays. J. Eng. Gas Turbine Power 139 (6):061503. doi:10.1115/1.4035660.
  • Mahesh, S., and D. P. Mishra. 2015. Characterization of swirling CNG inverse jet flame in recessed coaxial burner. Fuel 161:182–92. doi:10.1016/j.fuel.2015.08.022.
  • McManus, K. R., T. Poinsot, and S. M. Candel. 1993. A review of active control of combustion instabilities. PECS 19 (1):1–29. doi:10.1016/0360-1285(93)90020-F.
  • Nemitallah, M. A., A. A. Abdelhafez, A. Ali, I. Mansir, and M. A. Habib. 2019. Frontiers in combustion techniques and burner designs for emissions control and CO 2 capture: A review. Int. J. Energy Res er.4730. doi:10.1002/er.4730.
  • Patel, V., and R. Shah. 2018. Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Appl. Therm. Eng. 137:377–85. doi:10.1016/j.applthermaleng.2018.03.105.
  • Rajasegar, R., J. Choi, B. McGann, A. Oldani, T. Lee, S. D. Hammack, C. D. Carter, and J. Yoo. 2019. Mesoscale burner array performance analysis. Combust. Flame 199:324–37. doi:10.1016/j.combustflame.2018.10.020.
  • Rajasegar, R., C. M. Mitsingas, E. K. Mayhew, Q. Liu, T. Lee, and J. Yoo. 2018. Development and characterization of additive-manufactured mesoscale combustor array. J. Energy Eng 144 (3):04018013. doi:10.1061/(ASCE)EY.1943-7897.0000527.
  • Rashwan, S. S. 2018. The effect of swirl number and oxidizer composition on combustion characteristics of non-premixed methane flames. Energy & Fuels 32 (2):2517–26. doi:10.1021/acs.energyfuels.8b00233.
  • Ruan, C., F. Chen, T. Yu, W. Cai, X. Li, and X. Lu. 2020. Experimental study on flame/flow dynamics in a multi-nozzle gas turbine model combustor under thermo-acoustically unstable condition with different swirler configurations. Aerosp. Sci. Technol 98:105692. doi:10.1016/j.ast.2020.105692.
  • Samarasinghe, J., S. J. Peluso, B. D. Quay, and D. A. Santavicca. 2016. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor. J. Eng. Gas Turbine Power 138 (3):031502. doi:10.1115/1.4031439.
  • Sirignano, W. A. 2021. Combustion with multiple flames under high strain rates. Combust. Sci. Technol 193 (7):1173–202. doi:10.1080/00102202.2019.1685507.
  • Tao, C., Q. Ye, J. Wei, Q. Shi, and F. Tang. 2019. Experimental study on flame‒flame interaction and its merging features induced by double rectangular propane diffusion burners with various aspect ratios. Combust. Sci. Technol 191 (8):1416–29. doi:10.1080/00102202.2018.1529031.
  • Weiland, N. T., T. G. Sidwell, and P. A. Strakey. 2013. Testing of a hydrogen diffusion flame array injector at gas turbine conditions. Combust. Sci. Technol 185 (7):1132–50. doi:10.1080/00102202.2013.781164.
  • Yang, H., Y. Wu, X. Zeng, X. Wang, and D. Zhao. 2021. Partially-Premixed combustion characteristics and thermal performance of micro jet array burners with different nozzle spacings. J. Therm. Sci 30 (5):1718–30. doi:10.1007/s11630-021-1511-7.
  • Zhao, X., W. Peng, X. Yu, and B. Shi. 2021. A comparison of partially premixed methane/air combustion in confined vane-swirl and jet-swirl combustors. Combust. Sci. Technol 1–20. doi:10.1080/00102202.2021.1943371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.