122
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

Modelling the Effect of Grassland Fuel Bed Structure on the Headfire Rate of Spread

&
Pages 1119-1136 | Received 14 Nov 2021, Accepted 04 Aug 2022, Published online: 12 Aug 2022

References

  • Alen, R., E. Kuoppala, and P. Oesch. 1996. Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrolysis 36:137–48. doi:10.1016/0165-2370(96)00932-1.
  • Anderson, W. R., M. G. Cruz, P. M. Fernandes, L. McCaw, J. A. Vega, R. A. Bradstock, L. Fogarty, J. Gould, G. McCarthy, J. B. Marsden-Smedley, et al. 2015. A generic, empirical - based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 24:443–60. doi:10.1071/WF14130.
  • Atchley, A., R. Linn, A. Jonko, C. Hoffman, J. Hyman, F. Pimont, C. Sieg, and R. Middleton. 2021. Effect of fuel spatial distribution on wildland fire behaviour. Int. J. Wlidland Fire 30:179–89.
  • Bard, S., and P.J. Pagni 1985. Spatial variation of soot volume fractions in pool fire diffusion flame. First Symposium on Fire Safety Science. London
  • Branca, C., A. Albano, and C. Di Blasi. 2005. Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–41. doi:10.1016/j.tca.2005.02.030.
  • Burgan, R.E. 1987. Concepts and interpreted examples in advanced fuel modeling. Ogden, UT: USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-238.
  • Cruz, M., G. Sullivan, L. Andrew, J. Gould, S. Hurley, J. Richard, and M. P. Plucinski. 2018. Got to burn to learn: The effect of fuel load on grassland fire behaviour and its management implications. Int. J. Wildland Fire 27:727–41. doi:10.1071/WF18082.
  • Cruz, M. G., A. L. Sullivan, R. J. Hurley, M. P. Plucinski, and J. S. Gould 2017. The effect of fuel load and structure on grassland fire behaviour and fire danger. Canberra, Australia: CSIRO Land and Water, Client Report No EP178976.
  • Di Blasi, C. 1998. Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. J. Ana. Appl. Pyrolysis 47:43–64. doi:10.1016/S0165-2370(98)00079-5.
  • Di Blasi, C., C. Branca, A. Santoro, and H. Gonzalez. 2001. Pyrolytic behavior and products of some wood varieties. Combust. Flame 47:165–77. doi:10.1016/S0010-2180(00)00191-7.
  • Dupuy, J.-L., and D. Morvan. 2005. Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model. Int. J. Wildland Fire 14:141–51. doi:10.1071/WF04028.
  • Grishin, A. M. 1996. Mathematical modeling of forest fires and new methods of figthing them. Tomsk: Tomsk State University.
  • Gronli, M. G. 1996. A theoretical and experimental study of thermal degradation of biomas. Doctoral Thesis, The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Dept. of Thermal Energy and Hydropower, 7034 Trondheim, Norway p.342.
  • Incropera, F. P., and D. P. Dewitt. 1985. Fundamentals of heat and mass transfert, 4th ed., 846. New York: John Wiley & Son.
  • Kaplan, C. R., C. R. Shaddix, and K. C. Smyth. 1996. Computations of enhanced soot production in time-varying CH4/Air diffusion flame. Combust. Flame 106:392–404. doi:10.1016/0010-2180(95)00258-8.
  • Kent, D. R., and J. H. Honnery. 1990. A soot formation rate map for a laminar ethylene diffusion flame. Combust. Flame 79:287–98. doi:10.1016/0010-2180(90)90140-M.
  • Koo, E., P. J. Pagni, J. Woycheese, S. Stephens, D. Weise, and J. Huff. 2005. A simple physical model for forest fire spread rate. Proc. Fire Saf. Sci. 8:851–62. doi:10.3801/IAFSS.FSS.8-851.
  • Larini, M., F. Giraud, B. Porterie, and J. C. Loraud. 1998. A multiphase formulation for fire propagation in heterogeneous combustible media. Int. J. Heat Mass Trans. 41:881–97. doi:10.1016/S0017-9310(97)00173-7.
  • Linn, R. R., and P. Cunningham. 2005. Numerical simulations of grass fires using a coupled atmosphere-fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 110:1–19.
  • Linn, R., J. Winterkamp, J. Colman, C. Edminster, and J. Bailey. 2005. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int. J. Wildland Fire 14:37–48. doi:10.1071/WF04043.
  • Magnussen, B. F., and B. H. Hjertager 1977. On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion 16:719–29. doi:10.1016/S0082-0784(77)80366-4.
  • Marino, E., J.L. Dupuy, F. Pimont, M. Guijarro, C. Hernando, and R. Linn. 2012. Fuel bulk density and fuel moisture content effects on fire rate of spread: A comparison between FIRETEC model predictions and experimental results in shrub fuels. J. Fire Sci. 30:277–99. doi:10.1177/0734904111434286.
  • Mell, W., J. J. Charney, M. A. Jenkins, P. Cheney, and J. Gould 2005. Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. EastFire Conference, George Masson Univ. 11–13.
  • Mell, W., A. Mary, J. Jenkins, and P. C. Gould. 2007. A physics - based approach to modelling grassland fires. Int. J. Wildland Fire 16:1–22. doi:10.1071/WF06002.
  • Moinuddin, K. A. M., D. Sutherland, and W. Mell. 2018. Simulation study of grass fire using a physics – based model: Striving towards numerical rigour and the effect of grass height on the rate of spread. Int. J. Wildland Fire 27:800–14. doi:10.1071/WF17126.
  • Morvan, D. 2007. A numerical study of flame geometry and potential for crown fire initiation for a wildfire propagating through shrub fuel. Int. J. Wildland Fire 16:511–18. doi:10.1071/WF06010.
  • Morvan, D., and J. L. Dupuy. 2001. Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust. Flame 127:1981–94. doi:10.1016/S0010-2180(01)00302-9.
  • Morvan, D., and J. L. Dupuy. 2004. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame 138:199–210. doi:10.1016/j.combustflame.2004.05.001.
  • Novozhilov, V., B. Moghtaderi, D. F. Fletcher, and J. H. Kent. 1996. Computational fluid dynamics modelling of wood combustion. Fire Saf. J. 27:69–84. doi:10.1016/S0379-7112(96)00022-7.
  • Pagni, P. J., and T. G. Peterson 1973. Flame spread through porous fuel. Proc. of Fourteenth International Symposium on combustion, the combustion Institute pp. 1099–107.
  • Parson, R., R. Linn, F. Pimont, C. Hoffman, J. Sauer, J. Winteramp, C. Sieg, and W. Jolly. 2017. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior. Land 43:1–22.
  • Porterie, B., J.L. Consalvi, J.C. Loraud, F. Giroud, and C. Picard. 2007. Dynamics of wildland fires and their impact on structures. Combust. Flame 149:314–28. doi:10.1016/j.combustflame.2006.12.017.
  • Porterie, B., D. Morvan, J.C. Loraud, and M. Larini. 2000. Firespread through fuel beds: Modeling of wind - aided fires and induced hydrodynamics. Phys. Fluids 12:1762–82. doi:10.1063/1.870426.
  • Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels – USA. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT -115.
  • Séro-Guillaume, O., and J. Margerit. 2002. Modeling forest fires. Part I: A complete set of equations derived by extended irreversible thermodynamics. Int. J. Heat Mass Trans. 45:1705–22. doi:10.1016/S0017-9310(01)00248-4.
  • Susott, R. A. 1982. Characterization of the thermal properties of forest fuel by combustible gas analysis. Forest Sci. 2:404–20.
  • Vanella, M., K. McGrattan, R. McDermott, G. Forney, W. Mell, E. Gissi, and P. Fiorucci. 2021. A multi-fidelity framework for wildland fire behavior simulations over complex terrain. Atmosphere (12):273. doi:10.3390/atmos12020273.
  • Yakhot, S., and V. Orszag. 1986. Renormalization group analysis of turbulence. J Sci Comput 1:3–51. doi:10.1007/BF01061452.
  • Yakhot, M., and V. Smith. 1992. The renormalization group, the e-expansion and derivation of turbulence models. J Sci Comput 7:35–61. doi:10.1007/BF01060210.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Zhou, X., S. Mahalingam, and W. David. 2005. Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed. Combust. Flame 143:183–98. doi:10.1016/j.combustflame.2005.05.013.
  • Zhou, X. Y., and J. C. F. Pereira. 2001. A multidimensional model for simulating vegetation fire spread using a porous media sub-model. Fire Mater. 24:37–43. doi:10.1002/(SICI)1099-1018(200001/02)24:1<37:AID-FAM718>3.0.CO;2-Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.