190
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impacts of Nano-Sized Co3O4 on Ignition and Oxidation Performance of N-Decane and N-Decane/1,2,4-Trimethylbenzene Mixtures

ORCID Icon, & ORCID Icon
Pages 1152-1167 | Received 14 Jun 2022, Accepted 07 Aug 2022, Published online: 15 Aug 2022

References

  • Bahlawane, N. 2006. Kinetics of methane combustion over CVD-made cobalt oxide catalysts. Appl. Catal. B: Environ., 67 (3–4):168–76. doi:10.1016/j.apcatb.2006.03.024.
  • Bai, G., H. Dai, Y. Liu, K. Ji, X. Li, and S. Xie. 2013. Preparation and catalytic performance of cylinder- and cake-like Cr2O3 for toluene combustion. Catal. Commun., 36:43–47. doi:10.1016/j.catcom.2013.02.025.
  • Balcerski, W., S. Y. Ryu, and M. R. Hoffmann. 2008. Gas-phase photodegradation of decane and methanol on TiO2: Dynamic surface chemistry characterized by diffuse reflectance FTIR. Int. J. Photoenergy, 2008:964721. doi:10.1155/2008/964721.
  • Baldi, M., E. Finocchio, F. Milella, and G. Busca. 1998. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl. Catal. B: Environ., 16 (1):43–51. doi:10.1016/S0926-3373(97)00061-1.
  • Battin-Leclerc, F. 2008. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Prog. Energy Combust. Sci., 34 (4):440–98. doi:10.1016/j.pecs.2007.10.002.
  • Biet, J., M. H. Hakka, V. Warth, P.-A. Glaude, and F. Battin-Leclerc. 2008. Experimental and modeling study of the low-temperature oxidation of large alkanes. Energy Fuels, 22 (4):2258–69. doi:10.1021/ef8000746.
  • Cao, X., R. Zhou, N. Rui, Z. Wang, J. Wang, X. Zhou, and C.-J. Liu. 2017. Co3O4/HZSM-5 catalysts for methane combustion: The effect of preparation methodologies. Catal. Today, 297:219–27. doi:10.1016/j.cattod.2017.01.042.
  • Devener, B. V., S. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams. 2009. In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition. J. Phys. Chem. C, 113(48):20632–39. doi:10.1021/jp904317y.
  • Dudak, M., V. Novak, P. Koci, M. Marek, P. Blanco-Garcia, and G. Jones. 2014. Prediction of diffusivity and conversion of n-decane and CO in coated Pt/γ-Al2O3 catalyst depending on porous layer morphology. Appl. Catal. B: Environ., 150-151:446–58. doi:10.1016/j.apcatb.2013.12.018.
  • E, X.-T.-F., X. Zhi, X. Zhang, L. Wang, S. Xu, and J.-J. Zou. 2018. Ignition and combustion performances of high-energy-density jet fuels catalyzed by Pt and Pd nanoparticles. Energy Fuels, 32 (2):2163–69. doi:10.1021/acs.energyfuels.7b03342.
  • Fisher, B. T., J. S. Cowart, M. R. Weismiller, Z. J. Huba, and A. Epshteyn. 2017. Effects of amorphous Ti–Al–B nanopowder additives on combustion in a single-cylinder diesel engine. J. Eng. Gas Turbine Power-Trans. ASME., 139 (9):092802. doi:10.1115/1.4036189.
  • Haneda, M., M. Sasaki, H. Hamada, and M. Ozawa. 2011. In situ FT-IR study of diesel hydrocarbon oxidation over Pt/Al2O3 catalyst. Catal. Lett., 141 (9):1262–67. doi:10.1007/s10562-011-0661-8.
  • Haneda, M., M. Sasaki, H. Hamada, and M. Ozawa. 2013. Effect of Pt dispersion on the catalytic activity of supported Pt catalysts for diesel hydrocarbon oxidation. Top. Catal., 56 (1–8):249–54. doi:10.1007/s11244-013-9962-z.
  • Haneda, M., K. Suzuki, M. Sasaki, H. Hamada, and M. Ozawa. 2014. Catalytic performance of bimetallic PtPd/Al2O3 for diesel hydrocarbon oxidation and its implementation by acidic additives. Appl. Catal. A: General, 475:109–15. doi:10.1016/j.apcata.2014.01.023.
  • He, B., G. Cheng, S. Zhao, X. Zeng, Y. Li, R. Yang, M. Sun, L. Yu. 2019. Controlled synthesis of tunnel-structured MnO2 through hydrothermal transformation of δ-MnO2 and their catalytic combustion of dimethyl ether. J. Solid State Chem., 269:305–11. doi:10.1016/j.jssc.2018.09.005.
  • Herbinet, O., W. J. Pitz, and C. K. Westbrook. 2010. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust. Flame, 157 (5):893–908. doi:10.1016/j.combustflame.2009.10.013.
  • Hu, L., Q. Peng, and Y. Li. 2008. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc., 130 (48):16136. doi:10.1021/ja806400e.
  • Hu, Z., Z. Wang, Y. Guo, L. Wang, Y. Guo, J. Zhang, W. Zhan. 2018. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature. Environ. Sci. Technol., 52(16):9531–41. doi:10.1021/acs.est.8b03448.
  • Jeong, M.-G., E. J. Park, B. Jeong, D. H. Kim, and Y. D. Kim. 2014. Toluene combustion over NiO nanoparticles on mesoporous SiO2 prepared by atomic layer deposition. Chem. Eng. J., 237:62–69. doi:10.1016/j.cej.2013.09.100.
  • Jodlowski, P. J., R. J. Jedrzejczyk, D. Chlebda, M. Gierada, and J. Lojewska. 2017. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J. Catal., 350:1–12. doi:10.1016/j.jcat.2017.03.022.
  • Kim, S. C., and W. G. Shim. 2010. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B: Environ., 98 (3–4):180–85. doi:10.1016/j.apcatb.2010.05.027.
  • Kumar, M. V., A. V. Babu, and P. R. Kumar. 2019. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. Environ. Sci. Pollut. Res., 26 (8):7651–64. doi:10.1007/s11356-018-04075-0.
  • Kyritsis, D. C., S. Roychoudhury, C. S. McEnally, L. D. Pfefferle, and A. Gomez. 2004. Mesoscale combustion: A first step towards liquid fueled batteries. Exp. Therm. Fluid Sci., 28 (7):763–70. doi:10.1016/j.expthermflusci.2003.12.014.
  • Li, P., X. Chen, L. Ma, A. Bhat, Y. Li, and J. W. Schwank. 2019. Effect of Ce and La dopants in Co3O4 nanorods on the catalytic activity of CO and C3H6 oxidation. Catal. Sci. Technol., 9 (5):1165–77. doi:10.1039/C8CY02460J.
  • Li, J., L. Li, W. Cheng, F. Wu, X. Lu, and Z. Li. 2014. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem. Eng. J., 244:59–67. doi:10.1016/j.cej.2014.01.041.
  • Lin, H. K., C. B. Wang, H. C. Chiu, and S. H. Chien. 2003. In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide. Catal. Lett., 86 (1/3):63–68. doi:10.1023/A:1022659025068.
  • Liotta, L. F., H. Wu, G. Pantaleo, and A. M. Venezia. 2013. Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol., 3 (12):3085–102. doi:10.1039/c3cy00193h.
  • Liu, F., Y. Sang, H. Ma, Z. Li, and Z. Gao. 2017. Nickel oxide as an effective catalyst for catalytic combustion of methane. J. Nat. Gas Sci. Eng., 41:1–6. doi:10.1016/j.jngse.2017.02.025.
  • Luo, J., M. Meng, Y. Zha, and L. Guo. 2008. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO−CeO2 and Co3O4−CeO2 catalysts. J. Phys. Chem. C, 112 (23):8694–701. doi:10.1021/jp800651k.
  • Ma, L., Y. Geng, X. Chen, N. Yan, J. Li, and J. W. Schwank. 2020. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J., 402:125911. doi:10.1016/j.cej.2020.125911.
  • Ma, L., C. Y. Seo, X. Chen, K. Sun, and J. W. Schwank. 2018. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust. Appl. Catal. B: Environ., 222:44–58. doi:10.1016/j.apcatb.2017.10.001.
  • Marin-Flores, O., T. Turba, J. Breit, M. G. Norton, and S. Ha. 2010. Thermodynamic and experimental study of the partial oxidation of a Jet a fuel surrogate over molybdenum dioxide. Appl. Catal. A: General, 381 (1–2):18–25. doi:10.1016/j.apcata.2010.03.032.
  • McCown, K. W., and E. L. Petersen. 2014. Effects of nano-scale additives on the linear burning rate of nitromethane. Combust. Flame, 161 (7):1935–43. doi:10.1016/j.combustflame.2013.12.019.
  • Mei, D., X. Li, Q. Wu, and P. Sun. 2016. Role of cerium oxide nanoparticles as diesel additives in combustion efficiency improvements and emission reduction. J. Energy Eng., 142 (4):04015050. doi:10.1061/(ASCE)EY.1943-7897.0000329.
  • Naik, C. V., K. V. Puduppakkam, A. Modak, E. Meeks, Y. L. Wang, Q. Feng, T. T. Tsotsis. 2011. Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combust. Flame, 158(3):434–45. doi:10.1016/j.combustflame.2010.09.016.
  • Okumura, K., T. Kobayashi, H. Tanaka, and M. Niwa. 2003. Toluene combustion over palladium supported on various metal oxide supports. Appl. Catal. B: Environ., 44 (4):325–31. doi:10.1016/S0926-3373(03)00101-2.
  • Paredes, J. R., E. Diaz, F. V. Diez, and S. Ordonez. 2009. Combustion of methane in lean mixtures over bulk transition-metal oxides: Evaluation of the activity and self-deactivation. Energy Fuels, 23 (1):86–93. doi:10.1021/ef800704e.
  • Puertolas, B., A. Smith, I. Vazquez, A. Dejoz, A. Moragues, T. Garcia, B. Solsona. 2013. The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chem. Eng. J.,229:547–58. doi:10.1016/j.cej.2013.06.041.
  • Ren, Z., Z. Wu, W. Song, W. Xiao, Y. Guo, J. Ding, S. L. Suib, P.-X. Gao. 2016. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B: Environ., 180:150–60. doi:10.1016/j.apcatb.2015.04.021.
  • Rodrigues, J. M., M. Filipa Ribeiro, and E. C. Fernandes. 2018. Catalytic activity of electrodeposited cobalt oxide films for methane combustion in a micro-channel reactor. Fuel, 232:51–59. doi:10.1016/j.fuel.2018.05.114.
  • Setiawan, A., E. M. Kennedy, B. Z. Dlugogorski, A. A. Adesina, and M. Stockenhuber. 2015. The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. Catal. Today, 258:276–83. doi:10.1016/j.cattod.2014.11.031.
  • Shimizu, T., A. Abid, G. Poskrebyshev, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, B. Van Devener, S. L. Anderson. 2010. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combust. Flame, 157(3):421–35. doi:10.1016/j.combustflame.2009.07.012.
  • Singh, S. A., and G. Madras. 2015. Detailed mechanism and kinetic study of CO oxidation on cobalt oxide surfaces. Appl. Catal. A: General, 504:463–75. doi:10.1016/j.apcata.2014.10.024.
  • Solsona, B., T. E. Davies, T. Garcia, I. Vazquez, A. Dejoz, and S. H. Taylor. 2008. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Appl. Catal. B: Environ., 84 (1–2):176–84. doi:10.1016/j.apcatb.2008.03.021.
  • Swislocki, S., K. Stoewe, and W. F. Maier. 2014. Catalysts for selective propane oxidation in the presence of carbon monoxide: Mechanistic aspects. J. Catal., 316:219–30. doi:10.1016/j.jcat.2014.05.008.
  • Trigueiro, F. E., C. M. Ferreira, J. C. Volta, W. A. Gonzalez, and P. G. P. de Oliveria. 2006. Effect of niobium addition to Co/γ-Al2O3 catalyst on methane combustion. Catal. Today, 118 (3–4):425–32. doi:10.1016/j.cattod.2006.07.030.
  • Turek, A. M., I. E. Wachs, and E. Decanio. 1992. Acidic properties of alumina-supported metal oxide catalysts: An infrared spectroscopy study. J. Phys. Chem., 96 (12):5000–07. doi:10.1021/j100191a050.
  • Van Devener, B., and S. L. Anderson. 2006. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy Fuels, 20 (5):1886–94. doi:10.1021/ef060064g.
  • Vishnyakov, A. V., I. A. Korshunova, V. E. Kochurikhin, and L. S. Sal’Nikova. 2010. Catalytic activity of rare earth oxides in flameless methane combustion. Kinet. Catal., 51 (2):273–78. doi:10.1134/S0023158410020163.
  • Wang, B., Y. Liu, J. Weng, G. Pan, and Z. Tian. 2018. An experimental and modeling study on the low temperature oxidation of surrogate for JP-8 part II: Comparison between neat 1,3,5-trimethylbenzene and its mixture with n-decane. Combust. Flame, 192:517–29. doi:10.1016/j.combustflame.2018.01.001.
  • Wang, J., Y. Liu, X. Zhang, Z. Mi, and L. Wang. 2009. Facile preparation of hydrocarbon fuel-soluble nano-catalyst and its novel application in catalytic combustion of JP-10. Catal. Commun., 10 (11):1518–22. doi:10.1016/j.catcom.2009.04.007.
  • Wang, Q., K. L. Yeung, and M. A. Banares. 2020. Ceria and its related materials for VOC catalytic combustion: A review. Catal. Today, 356:141–54. doi:10.1016/j.cattod.2019.05.016.
  • Ward, T. A., J. S. Ervin, S. Zabarnick, and L. Shafer. 2005. Pressure effects on flowing mildly-cracked n-decane. J. Propuls. Power, 21 (2):344–55. doi:10.2514/1.6863.
  • Wen, W., S. Yu, C. Zhou, H. Ma, Z. Zhou, C. Cao, J. Yang, M. Xu, F. Qi, G. Zhang. 2020. Formation and fate of formaldehyde in methanol-to-hydrocarbon reaction: In situ synchrotron radiation photoionization mass spectrometry study. Angew. Chem.-Int. Edit., 59(12):4873–78. doi:10.1002/anie.201914953.
  • Weng, J., Y. Liu, B. Wang, L. Xing, L. Zhang, and Z. Tian. 2017. Experimental and kinetic investigation of 1,2,4-trimethylbenzene oxidation at low temperature. Proc. Combust. Inst., 36 (1):909–17. doi:10.1016/j.proci.2016.09.002.
  • Wickham, D. T., R. Cook, S. De Voss, J. R. Engel, and J. Nabity. 2006. Soluble nano-catalysts for high performance fuels. J. Russ. Laser Res., 27 (6):552–61. doi:10.1007/s10946-006-0034-8.
  • Williams, K. A., and L. D. Schmidt. 2006. Catalytic autoignition of higher alkane partial oxidation on Rh-coated foams. Appl. Catal. A: General, 299:30–45. doi:10.1016/j.apcata.2005.09.039.
  • Yang, W., X. Zhang, X. Zhu, L. Xu, P. Shi, and J. Zhou. 2021. Heterogeneous reaction and homogeneous flame coupled combustion behavior of n-decane in a partially packed catalytic bed combustor. Fuel, 290:120042. doi:10.1016/j.fuel.2020.120042.
  • Yao, J., H. Shi, D. Sun, H. Lu, B. Hou, L. Jia, Y. Xiao, D. Li. 2019. Facet-dependent activity of Co3O4 catalyst for C3H8 combustion. ChemCatchem, 11(22):5570–79. doi:10.1002/cctc.201901382.
  • Zamar, F., A. Trovarelli, C. Deleitenburg, and G. Dolcetti. 1995. CeO2-based solid solutions with the fluorite structure as novel and effective catalysts for methane combustion. J. Chem. Soc.-Chem. Commun., (9):965–66. doi:10.1039/c39950000965.
  • Zhang, D., C. Cao, S. Lu, Y. Cheng, and H. Zhang. 2019a. Experimental insight into catalytic mechanism of transition metal oxide nanoparticles on combustion of 5-amino-1H-tetrazole energetic propellant by multi kinetics methods and TG-FTIR-MS analysis. Fuel, 245:78–88. doi:10.1016/j.fuel.2019.02.007.
  • Zhang, K., X. Peng, Y. Cao, H. Yang, X. Wang, Y. Zhang, Y. Zheng, Y. Xiao, L. Jiang. 2019b. Effect of MnO2 morphology on its catalytic performance in lean methane combustion. Mater. Res. Bull., 111:338–41. doi:10.1016/j.materresbull.2018.11.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.