223
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Numerical Investigation of Oxygen-Enriched Biogas Counter-Flow Diffusion Flames

, , & ORCID Icon
Pages 1207-1226 | Received 15 Dec 2021, Accepted 10 Aug 2022, Published online: 18 Aug 2022

References

  • Barlow, R. S., N. S. A. Smith, J-Y. Chen, and R. W. Bilger. 1999. Nitric oxide formation in dilute hydrogen jet flames: isolation of the effects of radiation and turbulence-chemistry submodels. Combustion and Flame 117 (1–2):4–31. doi:10.1016/S0010-2180(98)00071-6.
  • Baukal, C. E., Jr. 1998. Oxygen- enhanced combustion, air products and chemicals. Pennsylvania: Inc., CRC Press.
  • Baukal, C. E., Jr. 2013. The John Zink Hamworthy combustion handbook. 2nd ed. USA: CRC Press, Francis and Taylor.
  • Belohradsky, P., P. Skryja, and I. Hudák. 2014. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics. Energy 75:116–26. doi:10.1016/j.energy.2014.04.026.
  • Charest, M. R. J., Ö. L. Gülder, and C. P. T. Groth. 2014. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combus. Flame 161 (10):2678–91. doi:10.1016/j.combustflame.2014.04.012.
  • Chen, S., and C. Zheng. 2011. Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition. Int. J. Hydrogen Energ 36 (23):15403–13. doi:10.1016/j.ijhydene.2011.09.002.
  • Cheng, Z., J. A. Wehrmeyer, and R. W. Pitz. 2006. Experimental and numerical studies of opposed jet oxygen-enhanced methane diffusion flames. Combust. Sci. Technol 178 (12):2145–63. doi:http://dx.doi.org/10.1080/00102200600616745.
  • Eckart, S., C. Yu, U. Maas, and H. Krause. 2021. Experimental and numerical investigations on extinction strain rates in non-premixed counterflow methane and propane flames in an oxygen reduced environment. Fuel 298:120781. doi:10.1016/j.fuel.2021.120781.
  • Fischer, M., and X. Jiang. 2015. An investigation of the chemical kinetics of biogas combustion. Fuel 150:711–20. doi:http://dx.doi.org/10.1016/j.fuel.2015.01.085.
  • FLUENT Inc. 2005, Fluent User’s Guide Ver. 6.2
  • Hadef, A., Mameri, A., Tabet, F., and Z.Aouachria. 2018, Effect of the addition of H2 and H2O on the polluting species in a counter-flow diffusion flame of biogas in flameless regime, Int. J. Hydrogen Energ. 4: 3475–3481. doi:10.1016/j.ijhydene.2017.11.159
  • Harish, A., H. R. Rakesh Ranga, A. Babu, and V. Raghavan. 2018. Experimental study of flame characteristics and stability regimes of biogas – air cross flow non-premixed flames. Fuel 223:334–43. doi:10.1016/j.fuel.2018.03.055.
  • Ilbas, M., N. U. Guler, and M. Sahin. 2021. Experimental and numerical investigation of biogas distributes combustion with different oxidizers in a swirl stabilized combustor. Fuel 304:121452. doi:10.1016/j.fuel.2021.121452.
  • Jahangirian, S., A. Engeda, and I.S. Wichman. 2009. Thermal and chemical structure of biogas counterflow diffusion flames. Energy Fuels 23 (11):5312–21. doi:10.1021/ef9002044.
  • Juanos, A. J., and W. A. Sirignano. 2017. Extinction analysis of a methane-oxygen counterflow flame at high pressure. Combust. Sci. Technol Doi. 189 (12):2180–94. doi:10.1080/00102202.2017.1367293.
  • Khan, I.U., M. H. D. Othman, H. Hashim, T. Matsuura, A. F. Ismail, M. Rezaei-Dasht Arzhandi, and I. Wan Azelee. 2017. Biogas an a renewable energy fuel – a review of biogas upgrading, utilization and storage. Energ. Convers. Manage 150:277–94. doi:http://dx.doi.org/10.1016/j.enconman.2017.08.035.
  • Kim, J. S., and F. A. Williams. 1997. Extinction of diffusion flames with non-unity Lewis number. Eng. Math 31 (2/3):101–18. doi:10.1023/A:1004282110474.
  • Kumar, S. 2012. Biogas. Croatia: InTech.
  • Leung, T., and I. Wierzba. 2008. The effects of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. Int. J. Hydrogen Energ 33 (14):3856–62. doi:10.1016/j.ijhydene.2008.04.030.
  • Li, J., H. Huang, Y. Bai, Y. Osaka, N. Kobayashi, and Y. Chen. 2017. Combustion and heat release characteristics of biogas under hydrogen- and oxygen-enriched condition. Energies 10 (8):1200. doi:10.3390/en10081200.
  • Lim, J., J. Gore, and R. Viskanta. 2000. A study of the effects of air preheat on the structure of methane/air counterflow diffusion flames. Combust. Flame 121 (1–2):262–74. doi:10.1016/S0010-2180(99)00137-6.
  • Mameri, A., and F. Tabet. 2016. Numerical investigation of counter-flow diffusion flame of biogas–hydrogen blends: effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. Int. J. Hydrogen Energ 41 (3):2011–22. doi:http://dx.doi.org/10.1016/j.ijhydene.2015.11.035.
  • Mameri, A., F. Tabet, and A. Hadef. 2017. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter‑flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture. Heat Mass Transfer 53 (8):1–10. doi:10.1007/s00231-017-2017-4.
  • Mameri, A., F. Tabet, and A. Hadef. 2018. MILD combustion of hydrogenated biogas under several operating conditions in an opposed jet configuration. Int. J. Hydrogen Energ 43 (6):3566–76. doi:http://dx.doi.org/10.1016/j.ijhydene.2017.04.273.
  • Masson-Delmotte, V., P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, C. Moufouma-Okia Péan, R. Pidcock, S. Connors, et al. 2018. IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge, UK and New York: Cambridge University Press. doi: 10.1017/9781009157940.
  • Mehregan, M., and M. Moghiman. 2018. A numerical investigation of preheated diluted oxidizer influence on NOx emission of biogas flameless combustion using Taguchi approach. Fuel 227:1–5. doi:10.1016/j.fuel.2018.04.049.
  • Park, J., D. S. Bae, M. S. Cha, J. H. Yun, S. I. Keel, H. C. Cho, T. K. Kim, and J. S. Ha. 2008. Flame characteristics in H2/CO synthetic gas diffusion flames diluted with CO2: effects of radiative heat loss and mixture composition. Int. J. Hydrogen Energ 3 (3):7256–726 4. doi:10.1016/j.ijhydene.2008.07.063.
  • Paulauskas, R., R. Skvorčinskienė, K. Zakarauskas, and N. Striūgas. 2022. Combustion performance of low calorific gas enriched by oxygen and ozone. Fuel 324 (part C):124761. doi:10.1016/j.fuel.2022.124761.
  • Perpignan, A. A. V., A. G. Rao, and D. J. E. M. Roekaerts. 2018. Flameless Combustion and its Potential Towards Gas Turbines. Prog. Energy Combus. Sci 69:28–62. doi:10.1016/j.pecs.2018.06.002.
  • Pitsch, H., and N. Peters. 1998. A consistent flamelet formulation for nonpermixed combustion considering differential diffusion effects. Combust. Flame 114 (1–2):26–40. doi:10.1016/S0010-2180(97)00278-2.
  • Saediamiri, M., M. Birouk, and J.A. Kozinski. 2016. Enhancing the stability limits of biogas non-premixed flame. Combust. Sci. Technol 188 (11–12):2077–104. doi:http://dx.doi.org/10.1080/00102202.2016.1211915.
  • Safer, M., F. Tabet, A. Ouadha, and K. Safer. 2015. A numerical investigation of structure and emissions of oxygen-enriched syngas flame in counter-flow configuration. Int. J. Hydrogen Energ 40(6):2890–98. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.12.117.
  • Safer, K., F. Tabet, A. Ouadha, M. Safer, and I. Gokalp. 2013. Combustion characteristics of hydrogen rich alternative fuels in counterflow flame configuration. Energ. Convers. Manage 74:269–78. doi:http://dx.doi.org/10.1016/j.enconman.2013.05.017.
  • Safer, K., F. Tabet, A. Ouadha, M. Safer, and I. Gokalp. 2014. Simulation of a syngas counter-flow diffusion flame structure and NO emissions in the pressure range 1-10 atm. Fuel Process. Technol 123:149–58. doi:http://dx.doi.org/10.1016/j.fuproc.2013.10.019.
  • Sahin, M., and M. Ilbas. 2020. Analysis of the effect of H2O content on combustion behaviours of a biogas fuel. Int. J. Hydrogen Energ 45 (5):3651–59. doi:10.1016/j.ijhydene.2019.02.042.
  • Sherif, D., Y. Goswami, E. K. Stefanakos, and A. Steinfeld. 2014. Handbook of hydrogen energy. Boca Raton: CRC Press.
  • Shih, H.Y. 2009. Computed extinction limits and flame structures of H2/O2counterflow diffusion flames with CO2dilution. Int. J. Hydrogen Energ 34 (9):4005–13. doi:10.1016/j.ijhydene.2009.03.013.
  • Shih, H.Y., J.R. Hsu, and Y.H. Lin. 2014. Computed flammability limits of opposed-jet H2/CO syngas diffusion flames. Int. J. Hydrogen Energy 39:3459–68. doi:10.1016/j.ijhydene.2013.12.056.
  • Smith, G.P., D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, et al. n.d. GRI Mech-3.0, http://www.me.berkeley.edu/grimech/. Accessed June 10, 2021
  • STEP El-Karma. 2017, https://www.seor.dz/metiers-de-leau/assainissement/stations-depuration/. Accessed september 12, 2021
  • Striūgas, N., K. Zakarauskas, R. Paulauskas, and R. Skvorčinskienė. 2020. Chemiluminescence-Based characterization of tail biogas combustion stability under syngas and oxygen-enriched conditions. Exp. Thermal Fluid Sci 116:110133. doi:10.1016/j.expthermflusci.2020.110133.
  • T’Ien, J.S. 1986. Diffusion flame extinction at small stretch rates: the mechanism of radiative loss. Combus. Flame 65:31–34. doi:10.1016/0010-2180(86)90069-6.
  • Takeno, T., and M. Nishioka. 1993. Species conservation and emission indices for flames described by similarity solutions. Combust. Flame 92 (4):465–68. doi:10.1016/0010-2180(93)90157-X.
  • Wang, X., L. Zheng, J. Wang, R. Pan, W. Yang, H. Jin, and Y. Fu. 2021. Effect of propane addition and oxygen enrichment on the flame characteristics of biogas. Energy Fuels 35:5015–25. doi:https://dx.doi.org/10.1021/acs.energyfuels.1c00113.
  • WBA (World Bioenergy Association).2020. Global bioenergy statistics. http://www.worldbioenergy.org/global-bioenergy-statistics/2021. Assessed September 14, 2021
  • Wu, K.K., Y.C. Chang, C.H. Chen, and Y.D. Chen. 2010. High-Efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 89 (9):2455–62. doi:10.1016/j.fuel.2010.02.002.
  • Ye, J., P.R. Medwell, B.B. Dally, and M.J. Evans. 2016. The transition of ethanol flames from conventional to MILD combustion. Combust. Flame 171:173–84. doi:10.1016/j.combustflame.2016.05.020.
  • Yilmaz, I., B. Alabas, M. Tastan, and G. Tunç. 2020. Effect of oxygen enrichment on the flame stability and emissions during biogas combustion: an experimental study. Fuel 280:118703. doi:10.1016/j.fuel.2020.118703.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2013. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. Int. J. Hydrogen Energ 38 (16):6874–81. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.02.046.
  • Zouagri, R., A. Mameri, F. Tabet, and A. Hadef. 2020. Characterization of the combustion of the mixtures biogas-syngas at high strain rates. Fuel 271:117580. doi:10.1016/j.fuel.2020.117580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.