342
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Experimental Investigation of Kerosene Droplet Distribution in a Linearized Rotating Detonation Engine

, , , , &
Pages 1227-1242 | Received 08 Jun 2022, Accepted 10 Aug 2022, Published online: 19 Aug 2022

References

  • Austin, J., F. Pintgen, and J. Shepherd. 2005. Lead shock oscillation and decoupling in propagating detonations. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1170.
  • Ayers, Z., A.I. Lemcherfi, E. Plaehn, C.D. Slabaugh, T.R. Meyer, C.A. Fugger, and S. Roy. 2021. Application of 100 kHz acetone-PLIF for the investigation of mixing dynamics in a self-excited linear detonation channel. AIAA Scitech 2021 Forum, 0554.
  • Bedick, C., D. Ferguson, and P. Strakey. 2019. Characterization of rotating detonation engine injector response using laser-induced fluorescence. J. Propul. Power 35:827–38.
  • Burr, J.R., and K.H. Yu. 2019. Mixing in linear detonation channel with discrete injectors and side relief. AIAA Scitech 2019 Forum, 1014.
  • Cheng, P., Y. Wu, F. Song, S. Xu, X. Chen, J. Zhou, and X. Yang. 2022. Combustion products analysis of large-scale kerosene/air rotating detonation combustor. Combust. Sci. Technol. :1–13.
  • Duvall, J., and M. Gamba. 2018. Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence, 2018 Joint Propulsion Conference, Cincinnati, Ohio. 4690.
  • Emberson, D.R., B. Ihracska, S. Imran, and A. Diez. 2016. Building diagnoses with four layers: WHO 2016 classification of CNS tumors. Rev. Neurol. (Paris) 172(4–5):253–62. doi:10.1016/j.neurol.2016.04.006.
  • Fotia, M., T.A. Kaemming, J. Hoke, and F. Schauer. 2015. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 0631.
  • Fujii, J., Y. Kumazawa, A. Matsuo, S. Nakagami, K. Matsuoka, and J. Kasahara. 2017. Numerical investigation on detonation velocity in rotating detonation engine chamber. Proc. Combust. Inst. 36:2665–72.
  • Hargus, W.A., S.A. Schumaker, and E.J. Paulson. 2018. Air force research laboratory rotating detonation rocket engine development. 2018 joint propulsion conference, Cincinnati, Ohio, 4876.
  • Huang, S., Y. Wu, K. Zhang, Z. Li, J. D. Evans, R. Rose, T. M. Gilligan, A. LeBrun, N. He, T. Zheng, et al. 2021. A novel method for the detection and diagnosis of virus infections in honey bees. J. Virol. Methods 293:120382. doi:10.1016/j.jviromet.2021.114163.
  • Huang, S., Y. Wu, K. Zhang, J. Sun, D. Jin, and Y. Li. 2022. Experimental investigation on spray and ignition characteristics of plasma actuated bluff body flameholder. Fuel 309:122215.
  • Hui, Y., L. Feng, and A. Baigang Sjcjo. 2012. Trajectory analysis of fuel injection into supersonic cross flow based on schlieren method. Chin. J. Aeronaut. 25:42–50.
  • J-M, L., P.-H. Chang, L. Li, Y. Yang, C.J. Teo, and B.C. Khoo. 2018. Investigation of injection strategy for liquid-fuel rotating detonation engine. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 0403.
  • Johnson, R.G. 2000. Design, characterization, and performance of a valveless pulse detonation engine. Monterey, California: Doctoral dissertation, Naval Postgraduate School.
  • Kannaiyan, K., M.V.K. Banda, and A. Vaidyanathan. 2016. Planar sauter mean diameter measurements in liquid centered swirl coaxial injector using laser induced fluorescence, mie scattering and laser diffraction techniques. Acta Astronaut. 123:257–70.
  • Kindracki, J. 2012. Experimental studies of kerosene injection into a model of a detonation chamber. J. Power Technol. 92 (2).
  • Klein-Douwel, R., P. Frijters, L. Somers, W.A. De Boer, and R.S. Baert. 2007. Macroscopic diesel fuel spray shadowgraphy using high speed digital imaging in a high pressure cell. Fuel 86:1994–2007.
  • Li, C., Q. Li, C. Shen, and C. Li. 2017. Investigation on structure of shock wave in the near-field of a liquid jet in M2. 1 supersonic crossflow. 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 2432.
  • Lu, F.K., and E.M. Braun. 2014. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propul. Power 30:1125–42.
  • Ma, J.Z., M.-Y. Luan, Z.-J. Xia, J.P. Wang, S.J. Zhang, S.B. Yao, and B. Wang. 2020. Recent progress, development trends, and consideration of continuous detonation engines. AIAA J. 58:4976–5035.
  • Miao, S., J. Zhou, S. Liu, and X. Cai. 2018. Formation mechanisms and characteristics of transition patterns in oblique detonations. Acta Astronaut. 142:121–29.
  • Mizener, A.R., and F.K. Lu. 2016. Preliminary parametric analysis of a rotating detonation engine by analytical methods. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 4876.
  • Phylippov, Y.G., V. Dushin, V. Nikitin, V.A. Nerchenko, N.V. Korolkova, and V.M. Guendugov. 2012. Fluid mechanics of pulse detonation thrusters. Acta Astronaut. 76:115–26.
  • Qi, W., Y. Zhou, and Y. Zhang. 2020. An optical diagnostic technique based on ultraviolet absorption and schlieren for components stratification in a binary-component fuel–air mixture. Exp. Fluids 61:1–12.
  • Rankin, B.A., M.L. Fotia, A.G. Naples, C.A. Stevens, J.L. Hoke, T.A. Kaemming, S.W. Theuerkauf, and F.R. Schauer. 2017. Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power 33:131–43.
  • Redhal, S.C., J.R. Burr, and K. Yu. 2018. Propellants breakup and mixing characteristics in model rotating detonation engine. 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference, Orlando, FL, 5200.
  • Song, X., B. Li, and L. Xie. 2020. Experimental investigation on the properties of liquid film breakup induced by shock waves. Chin. Phys. B 29:086201.
  • St George, A.C., V. Anand, R.B. Driscoll, and E.J. Gutmark. 2016. A correlation-based method to quantify the operating state in a rotating detonation combustor. 54th AIAA Aerospace Sciences Meeting, California, USA, 1402.
  • Sun, K., and Q. Zhang. 2022. Effect of nitroethane on explosion parameters of multi-component mixed fuel aerosol. Fuel 320:123897.
  • Tate, R.J., and I. Potn. 1982. Some problems associated with the accurate representation of droplet size distributions. Proceedings of 2nd International Conference on Liquid Atomization and Spray Systems, vol. 12.
  • WaltersWalters, I.V., C.L. Journell, A. Lemcherfi, R.M. Gejji, S.D. Heister, and C.D. Slabaugh. 2020. Operability of a natural gas–air rotating detonation engine. J. Propul. Power 36:453–64.
  • Wang, F., T. Mizukaki, and S. Matsuyama. 2022. Visualization and CFD of the influence of mixing on detonation wave propagation inside a rotating-detonation engine by using linear detonation channel. AIAA SCITECH 2022 Forum, 1456.
  • Wolański, P. 2013. Detonative propulsion. Proc. Combust. Inst. 34:125–58.
  • Zhao, J., Y. Ren, Y. Tong, W. Lin, and W. Nie. 2021. Atomization of a liquid jet in supersonic crossflow in a combustion chamber with an expanded section. Acta Astronaut. 180:35–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.