137
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Influence of Particle Size in Influencing Smoldering Behavior Through Porous Woody Fuel Beds

&
Pages 1243-1265 | Received 24 Feb 2022, Accepted 15 Aug 2022, Published online: 31 Aug 2022

References

  • Amin, H. M. F., Y. Hu, and G. Rein. 2020. Spatially resolved horizontal spread in smouldering peat combining infrared and visual diagnostics. Combust. Flame 220:328–36. doi:10.1016/j.combustflame.2020.06.039.
  • Anderson, M. K., R. T. Sleight, and J. L. Torero. 2000. Ignition signatures of a downward smolder reaction. Experimental Thermal and Fluid Science 21 (1–3):33–40.
  • Asakuma, Y., Y. Kanazawa, and T. Yamamoto. 2014. Thermal radiation analysis of packed bed by a homogenization method. Int. J. Heat Mass. Transf. 73:97–102. doi:10.1016/j.ijheatmasstransfer.2014.01.065.
  • ASTM International. 2014. ASTM D 2974 - Standard test methods for moisture, ash, and organic matter of peat and other organic soils. i (April).
  • Baver, L. D. 1939. Soil permeability in relation to non-capillary porosity. Soil Sci. Soc. Am. J. 3 (C):52–56. doi:10.2136/sssaj1939.036159950003000C0010x.
  • Campbell, G. S., J. D. Jungbauer, W. R. Bidlake, and R. D. Hungerford. 1994. Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 158 (5):307–13. doi:10.1097/00010694-199411000-00001.
  • Churchill, S. W. 2017. Free convection around immersed bodies. HEDH Multimedia, Begellhouse. doi:10.1615/hedhme.a.000174.
  • Cowan, D. A., W. G. Page, B. W. Butler, and D. L. Blunck. 2020. Effects of fuel characteristics on horizontal spread rate and ground surface temperatures of smouldering duff. Int. J. Wildland Fire 29 (9):820. doi:10.1071/WF19207.
  • Frandsen, W. H. 1987. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff. Canadian J. Forest Res. 17 (12):12. doi:10.1139/x87-236.
  • Garlough, E. C., and C. R. Keyes. 2011. Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds. Int. J. Wildland Fire 20 (4):589–96. doi:10.1071/WF10048.
  • He, F., and F. Behrendt. 2009. Comparison of natural upward and downward smoldering using the volume reaction method. Energy Fuels 23 (12):12. doi:10.1021/ef900646p.
  • He, F., and F. Behrendt. 2011. A new method for simulating the combustion of a large biomass particle-A combination of a volume reaction model and front reaction approximation. Combust. Flame 158:12. doi:10.1016/j.combustflame.2011.04.016.
  • He, F., W. Yi, Y. Li, J. Zha, and B. Luo. 2014. Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investigation. Biomass Bioenergy 67:288–96. doi:10.1016/j.biombioe.2014.05.003.
  • Howell, J. R., and M. P. Mengüç. 2011. Radiative transfer configuration factor catalog: A listing of relations for common geometries. J. Quant. Spectrosc. Radiat. Transf. 112:5. doi:10.1016/j.jqsrt.2010.10.002.
  • Huang, X., and G. Rein. 2015. Computational study of critical moisture and depth of burn in peat fires. Int. J. Wildland Fire 24 (6):798. doi:10.1071/WF14178.
  • Huang, X., and G. Rein. 2016. Interactions of Earth’s atmospheric oxygen and fuel moisture in smouldering wildfires. Sci. Total Environ. 572:1440–46. doi:10.1016/j.scitotenv.2016.02.201.
  • Huang, X., F. Restuccia, M. Gramola, and G. Rein. 2016. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires. Combust. Flame 168:393–402. doi:10.1016/j.combustflame.2016.01.017.
  • López, G., L. A. Basterra, L. Acuña, and M. Casado. 2013. Determination of the emissivity of wood for inspection by infrared thermography. J. Nondestr. Eval. 32 (2):172–76. doi:10.1007/s10921-013-0170-3.
  • Lu, C., M. G. Yu, N. A. Liu, L. H. Zhang, J. J. Zhou, and Q. Z. Lin. 2006. Smoldering and the transition to flaming combustion for cellulosic materials: Effect of fuel porosity. For. Ecol. Manage. 234:S132. doi:10.1016/j.foreco.2006.08.173.
  • Nimmo, J. R. 2004. Porosity and pore size distribution. In Encyclopedia of soils in the environment, ed. D. Hillel, 295–303. London: Elsevier .
  • Noah, O. O., J. F. Slabber, and J. P. Meyer, 2014. Natural convection heat transfer phenomena in packed bed systems. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Montreal, Quebec, Canada.
  • Pawlitz, R. 2018. Forest service firefighters respond to eagle creek hotspot.
  • Rein, G. 2016. Smoldering combustion. In SFPE handbook of fire protection engineering, 581–603. New York, NY: Springer. doi:10.1007/978-1-4939-2565-0_19 .
  • Ronda, A., M. Della Zassa, A. Biasin, M. A. Martin-Lara, and P. Canu. 2017. Experimental investigation on the smouldering of pine bark. Fuel 193:81–94. doi:10.1016/j.fuel.2016.12.028.
  • Rosa, A., A. W. A. Hammad, E. Qualharini, E. Vazquez, and A. Haddad. 2020. Smoldering fire propagation in corn grain: An experimental study. Results Eng. 7:100151. doi:10.1016/j.rineng.2020.100151.
  • Rostami, A., J. Murthy, and M. Hajaligol. 2004. Modeling of smoldering process in a porous biomass fuel rod. Fuel 83 (11–12):1527–36. doi:10.1016/j.fuel.2003.11.018.
  • Ryan, K., and W. Frandsen. 1991. Basal injury from smoldering fires in mature pinus ponderosa laws. Int. J. Wildland Fire 1 (2):107. doi:10.1071/WF9910107.
  • Ryu, C., Y. B. Yang, A. Khor, N. E. Yates, V. N. Sharifi, and J. Swithenbank. 2006. Effect of fuel properties on biomass combustion: Part I. Experiments - Fuel type, equivalence ratio and particle size. Fuel 85:7–8. doi:10.1016/j.fuel.2005.09.019.
  • Smucker, B. D., T. C. Mulky, D. A. Cowan, K. E. Niemeyer, and D. L. Blunck. 2019. Effects of fuel content and density on the smoldering characteristics of cellulose and hemicellulose. Proceedings of the Combustion Institute, 37 (3):4107–4116. doi:10.1016/j.proci.2018.07.047.
  • Tao, Z., B. Bathras, B. Kwon, B. Biallas, M. J. Gollner, and R. Yang. 2020. Effect of firebrand size and geometry on heating from a smoldering pile under wind. Fire Saf. J 120:103031. doi:10.1016/j.firesaf.2020.103031.
  • Toda, M., F. Takahashi, and T. Hirose. 1973. Pressure loss and liquid holdup in packed bed reactor with cocurrent gas-liquid down flow. J. Chem. Eng. Jpn. 6 (2).
  • Wang, H., P. J. Van Eyk, P. R. Medwell, C. H. Birzer, Z. F. Tian, and M. Possell. 2017. Effects of oxygen concentration on radiation-aided and self-sustained smoldering combustion of radiata pine. Energy Fuels 31:8.
  • Wein, R. W. 1981. Characteristics and suppression of fires in organic terrain in Australia. Aust. For. 44:3. doi:10.1080/00049158.1981.10674309.
  • Yang, J., H. Chen, and N. Liu. 2016. Modeling of two-dimensional natural downward smoldering of peat. Energy Fuels 30:10. doi:10.1021/acs.energyfuels.6b02293.
  • Zhao, W., H. Chen, N. Liu, and J. Zhou. 2014. Thermogravimetric analysis of peat decomposition under different oxygen concentrations. J. Therm. Anal. Calorim. 117:1. doi:10.1007/s10973-014-3696-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.