321
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combustion of N-Decane+air Mixtures To Investigate Laminar Burning Velocity Measurements At Elevated Temperatures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1490-1508 | Received 12 Jul 2022, Accepted 26 Aug 2022, Published online: 06 Sep 2022

References

  • Akram, M., and S. Kumar. 2012. Measurement of laminar burning velocity of liquified petrolium gas air mixtures at elevated temperatures. Energy & Fuels ACS Publications. 26 (6):3267–74. doi:10.1021/ef300101n.
  • Akram, M., S. Minaev, and S. Kumar. 2013. Investigations on the formation of planar flames in mesoscale divergent channels and prediction of burning velocity at high temperatures. Combustion Science and Technology Taylor & Francis. 185 (4):645–60. doi:10.1080/00102202.2012.739224.
  • Alekseev, V. A., M. Christensen, and A. A. Konnov. 2015. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: a kinetic study using an updated mechanism. Combustion and Flame Elsevier. 162 (5):1884–98. doi:10.1016/j.combustflame.2014.12.009.
  • Alekseev, V. A., J. V. Soloviova-Sokolova, S. S. Matveev, I. V. Chechet, S. G. Matveev, and A. A. Konnov. 2017. Laminar burning velocities of n-decane and binary kerosene surrogate mixture. Fuel 187:429–34. Elsevier. doi:10.1016/j.fuel.2016.09.085.
  • Botha, J. P., and D. Brian Spalding. 1954. The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc R Soc Lond a Math Phys Sci 225 (1160):71–96. The Royal Society London.
  • Chunsheng, J., E. Dames, Y. L. Wang, H. Wang, and F. N. Egolfopoulos. 2010. Propagation and extinction of premixed C5–C12n-alkane flames. Combustion and Flame Elsevier. 157 (2):277–87. doi:10.1016/j.combustflame.2009.06.011.
  • Comandini, A., T. Dubois, and N. Chaumeix. 2015. Laminar flame speeds of N-decane, n-butylbenzene, and n-propylcyclohexane mixtures. Proceedings of the Combustion Institute Elsevier. 35 (1):671–78. doi:10.1016/j.proci.2014.05.125.
  • Davis, S. G., and C. K. Law. 1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology Taylor & Francis. 140 (1–6):427–49. doi:10.1080/00102209808915781.
  • Dayma, G., F. Halter, F. Foucher, C. Mounaim-Rousselle, and P. Dagaut. 2012. Laminar burning velocities of C4–C7 ethyl esters in a spherical combustion chamber: experimental and detailed kinetic modeling. Energy & Fuels ACS Publications. 26 (11):6669–77. doi:10.1021/ef301254q.
  • Ellson, J., E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. 2001. Graphviz—open source graph drawing tools. In International symposium on graph drawing, pp. 483–84. Springer.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2009. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena, CA. https://cantera.org/
  • Honnet, S., K. Seshadri, U. Niemann, and N. Peters. 2009. A surrogate fuel for kerosene. Proceedings of the Combustion Institute Elsevier. 32 (1):485–92. doi:10.1016/j.proci.2008.06.218.
  • Hui, X., and C.-J. Sung. 2013. Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures. Fuel 109:191–200. Elsevier. doi:10.1016/j.fuel.2012.12.084.
  • Katoch, A., S. M. S. Adamu Alfazazi, A. Chauhan, R. Kumar, and S. Kumar. 2019. Measurement of laminar burning velocity of n-pentanol+ air mixtures at elevated temperatures and a skeletal kinetic model. Fuel 237:10–17. Elsevier. doi:10.1016/j.fuel.2018.09.145.
  • Katoch, A., M. Asad, S. Minaev, and S. Kumar. 2016. Measurement of laminar burning velocities of methanol–air mixtures at elevated temperatures. Fuel 182:57–63. Elsevier. doi:10.1016/j.fuel.2016.05.076.
  • Katoch, A., A. Millán-Merino, and S. Kumar. 2018. Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures. Fuel 231:37–44. Elsevier. doi:10.1016/j.fuel.2018.05.083.
  • Khandelwal, B., and S. Kumar. 2010. Experimental investigations on flame stabilization behavior in a diverging micro channel with premixed methane–air mixtures. Appl. Therm. Eng. Elsevier. 30 (17–18):2718–23. doi:10.1016/j.applthermaleng.2010.07.023.
  • Kim, H. H., S. Hee Won, J. Santner, Z. Chen, and Y. Ju. 2013. Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proceedings of the Combustion Institute Elsevier. 34 (1):929–36. doi:10.1016/j.proci.2012.07.035.
  • Konnov, A. A., A. Mohammad, V. Ratna Kishore, N. Il Kim, C. Prathap, and S. Kumar. 2018. “A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures.” Progress in Energy and Combustion Science 68. Elsevier:197–267.
  • Kumar, S. 2011. Numerical studies on flame stabilization behavior of premixed methane-air mixtures in diverging mesoscale channels. Combustion Science and Technology Taylor & Francis. 183 (8):779–801. doi:10.1080/00102202.2011.552080.
  • Kumar, R., A. Katoch, A. Singhal, and S. Kumar. 2018. Experimental investigations on laminar burning velocity variation of methyl formate–air mixtures at elevated temperatures. Energy & Fuels ACS Publications. 32 (12):12936–48. doi:10.1021/acs.energyfuels.8b02963.
  • Kumar, R., R. Kishore Velamati, and S. Kumar. 2021. Combustion of methylcyclohexane at elevated temperatures to investigate burning velocity for surrogate fuel development. J. Hazard. Mater. 406: Elsevier: 124627. doi: 10.1016/j.jhazmat.2020.124627.
  • Kumar, R., and S. Kumar. 2021. Formulation of a three-component gasoline surrogate model using laminar burning velocity data at elevated mixture temperatures. Fuel 306:121581. Elsevier. doi:10.1016/j.fuel.2021.121581.
  • Kumar, R., A. Singhal, A. Katoch, and S. Kumar. 2020. Experimental investigations on laminar burning velocities of N-heptane+ air mixtures at higher mixture temperatures using externally heated diverging channel method. Energy & Fuels ACS Publications. 34 (2):2405–16. doi:10.1021/acs.energyfuels.9b04249.
  • Kumar, R., A. Singhal, and S. Kumar. 2021. Laminar burning velocity measurements of iso-octane+ air mixtures at higher unburnt mixture temperatures. Fuel 288:119652. Elsevier. doi:10.1016/j.fuel.2020.119652.
  • Kumar, K., and C.-J. Sung. 2007. Laminar flame speeds and extinction limits of preheated N-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame Elsevier. 151 (1–2):209–24. doi:10.1016/j.combustflame.2007.05.002.
  • Le Dortz, R., C. Strozzi, J. Sotton, and M. Bellenoue. 2021. Evaluation of the surrogates capacity to reproduce the laminar burning velocities and the sensitivity to stretching of a commercial kerosene under constant volume combustion conditions. Fuel 287:119426. Elsevier. doi:10.1016/j.fuel.2020.119426.
  • Liu, J., E. Hu, G. Yin, Z. Huang, and W. Zeng. 2022. An experimental and kinetic modeling study on the low-temperature oxidation, ignition delay time, and laminar flame speed of a surrogate fuel for RP-3 kerosene. Combustion and Flame 237:111821. Elsevier. doi:10.1016/j.combustflame.2021.111821.
  • Liu, X., Y. Wang, Y. Bai, Q. Zhou, and W. Yang. 2022. Development and verification of a physical–chemical surrogate model of rp-3 kerosene with skeletal mechanism for aircraft SI engine. Fuel 311:122626. Elsevier. doi:10.1016/j.fuel.2021.122626.
  • Moghaddas, A., K. Eisazadeh-Far, and H. Metghalchi. 2012. Laminar burning speed measurement of premixed N-decane/air mixtures using spherically expanding flames at high temperatures and pressures. Combustion and Flame Elsevier. 159 (4):1437–43. doi:10.1016/j.combustflame.2011.12.005.
  • Munzar, J. D., B. M. D. Benjamin Akih-Kumgeh, A. Zia, J. M. Bergthorson, and J. M. Bergthorson. 2013. An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components. Fuel 113:586–97. Elsevier. doi:10.1016/j.fuel.2013.05.105.
  • Nowak, U., and J. Warnatz. 1987. Sensitivity analysis in aliphatic hydrocarbon combustion. Progress in Astronautics and Aeronautics 113:87–103.
  • Ranzi, E., A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli. 2014. Reduced kinetic schemes of complex reaction systems: fossil and biomass‐derived transportation fuels. International Journal of Chemical Kinetics Wiley Online Library. 46 (9):512–42. doi:10.1002/kin.20867.
  • Ray, W. J.,sJr. 1983. Rate-Limiting step: a quantitative definition. application to steady-state enzymic systems. Biochemistry ACS Publications. 22 (20):4625–37. doi:10.1021/bi00289a003.
  • Sanner, M. F. 1999. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17 (1):57–61.
  • Sarathy, S. M., C. K. Westbrook, M. Mehl, W. J. Pitz, C. Togbe, P. Dagaut, H. Wang, M. A. Oehlschlaeger, U. Niemann, and K. Seshadri. 2011. Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combustion and Flame Elsevier. 158 (12):2338–57. doi:10.1016/j.combustflame.2011.05.007.
  • Singh, D., T. Nishiie, and L. Qiao. 2011. Experimental and kinetic modeling study of the combustion of n-decane, jet-A, and S-8 in laminar premixed flames. Combustion Science and Technology Taylor & Francis. 183 (10):1002–26. doi:10.1080/00102202.2011.575420.
  • Skjoth-Rasmussen, M. S., M. Braun-Unkhoff, C. Naumann, and P. Frank. 2003. “Experimental and numerical study of N-decane chemistry.” In Proceedings of the European Combustion Meeting. France.
  • Sutherland, J. W., S. M-C, and J. V. Michael. 2001. Rate constants for H+ CH4, CH3+ H2, and CH4 dissociation aT high temperature. International Journal of Chemical Kinetics Wiley Online Library. 33 (11):669–84. doi:10.1002/kin.1064.
  • Turányi, T. 1997. Applications of sensitivity analysis to combustion chemistry. Reliability Engineering & System Safety Elsevier. 57 (1):41–48. doi:10.1016/S0951-8320(97)00016-1.
  • Turányi, T., and A. S. Tomlin. 2014. Analysis of kinetic reaction mechanisms. Springer.
  • Varghese, R. J., V. R. K. Harshal Kolekar, S. Kumar, and S. Kumar. 2019. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel 257:116120. Elsevier. doi:10.1016/j.fuel.2019.116120.
  • Wang, H., E. Dames, B. Sirjean, D. A. Sheen, R. Tangko, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos, D. F. Davidson, and R. K. Hanson. 2010. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurf Version 2 (2):19.
  • Wu, Y., V. Modica, X. Yu, and F. Grisch. 2018. Experimental investigation of laminar flame speed measurement for kerosene fuels: jet A-1, surrogate fuel, and its pure components. Energy & Fuels ACS Publications. 32 (2):2332–43. doi:10.1021/acs.energyfuels.7b02731.
  • Xie, S., X. Li, T. Li, J. Huo, J. Wang, C. Wang, and X. Wang. 2022. Experimental and numerical study on the laminar burning velocities of n-decane/toluene/air mixtures at elevated temperatures. Fuel 322:124176. Elsevier. doi:10.1016/j.fuel.2022.124176.
  • Zeppieri, S. P., S. D. Klotz, and F. L. Dryer. 2000. Modeling concepts for larger carbon number alkanes: a partially reduced skeletal mechanism for N-decane oxidation and Pyrolysis. Proceedings of the Combustion Institute Elsevier. 28 (2):1587–95. doi:10.1016/S0082-0784(00)80556-1.
  • Zhang, X., W. Yang, X. Zhu, L. Xu, P. Shi, and J. Zhou. 2021. Combustion characteristics change induced by N-decane catalytic reactions and its effects on the coupled combustion occurrence. Fuel Processing Technology 220:106894. Elsevier. doi:10.1016/j.fuproc.2021.106894.
  • Zhao, Z., J. Li, A. Kazakov, F. L. Dryer, and S. P. Zeppieri. 2004. Burning velocities and a high-temperature skeletal kinetic model for N-decane. Combust. Sci. And Tech Taylor & Francis. 177 (1):89–106. doi:10.1080/00102200590883769.
  • Zhu, X., W. Yang, P. Shi, Y. He, Z. Wang, and J. Zhou. 2021. Impact of pyrolysis products on N-decane laminar flame speeds investigated through experimentation and kinetic simulations. Energy & Fuels 35 (9): 8194–8204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.