179
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Critical Condition of AP/HTPB Explosion Induced in Near Flame Area of Fire

, &
Pages 1598-1614 | Received 07 May 2022, Accepted 01 Sep 2022, Published online: 11 Sep 2022

References

  • Carmen, L., S. Francisco-Javier, G. Jose-Ramon, M. Ramon, and O. Ramon-Antonio. 2019. Validation of a multi-dimensional model for unsteady combustion of AP/HTPB propellants. Propell. Explos. Pyrotech. 44 (11):1482–93. doi:10.1002/prep.201900032.
  • Chen, L. 2011. Experimental study and numerical simulation of aluminum powder explosion characteristics. Dalian, China: Dalian University of technology.
  • Curdaneli, S., A. Ulas, and B. Yazici. 2013. Ignition delay time measurement of a reduced smoke composite solid propellant. Int. J. Energy Mater. Chem. Propul. 12 (2):163–72.
  • Dennis, C., and B. Bojko. 2019. On the combustion of heterogeneous AP/HTPB composite propellants: A review. Fuel 254 (Oct.15):115646.1–115646.15. doi:10.1016/j.fuel.2019.115646.
  • Dillier, C. A. M., E. D. Petersen, and E. L. Petersen. 2021. Isolating the effects of oxidizer characteristics and catalytic additives on the high-pressure exponent break of AP/HTPB-Composite propellants. Proc. Combust. Inst. 38 (3):4409–16. doi:10.1016/j.proci.2020.08.008.
  • Ding, W., J. S. Xu, C. S. Zhou, T. Y. Wang, and Y. F. Hou. 2022. Type I failure temperature-dependent properties of HTPB propellant/liner interface. Energetic Mater. 30 (2):146–54.
  • Essel, J. T., A. P. Nelson, L. B. Smilowitz, B. F. Henson, L. R. Merriman, D. Turnbaugh, C. Gray, and K. B. Shermer. 2020. Investigating the effect of chemical ingredient modifications on the slow cook-off violence of ammonium perchlorate solid propellants on the laboratory scale. J. Energy Mater. 38 (2):127–41. doi:10.1080/07370652.2019.1672831.
  • Gao, R. L. 2018. Investigation on cook-off & shock initiation characteristics of DNAN/HMX aluminized melt-cast explosives. Beijing, China: Beijing Institute of Technology.
  • Jeppson, M. B., M. W. Beckstead, and Q. Jing. 1998. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. AIAA J. 447.
  • Kim, K. H., C. K. Kim, J. C. Yoo, and J. J. Yoh. 2011. Test-Based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants. J. Propul. Power 27 (4):822–27. doi:10.2514/1.B34099.
  • Kim, Y., Y. Park, and J. J. Yoh. 2019. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions. Thermochim. Acta 678:178300. doi:10.1016/j.tca.2019.178300.
  • Kong, D. P., G. Q. Wang, P. Ping, and J. Wen. 2021. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Appl. Therm. Eng. 189:116661. doi:10.1016/j.applthermaleng.2021.116661.
  • Kou, Y. F., L. Chen, J. Y. Lu, D. S. Geng, W. Chen, and J. Y. Wu. 2021. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations. Combust. Flame 228:154–62. doi:10.1016/j.combustflame.2021.01.043.
  • Liang, Y., C. Zhang, and H. J. Zheng. 2003. Development characteristics investigation of rocket propellant. Aerosp. Technol. 2003 (7):47–50, 55.
  • Li, Z. F., and Q. Q. Fan. 2010. Investigation of fire and explosion incidents. Henan Ligong Daxue Xuebao, Ziran Kexueban 29 (5):576–80.
  • Li, W. F., Y. G. Yu, and R. Ye. 2018. Effects of charge size on slow cook-off characteristics of AP/HTPB composite propellant in base bleed unit. Propell. Explos. Pyrotech. 43 (4):404–12. doi:10.1002/prep.201700270.
  • Luo, D. 2016. Investigation on the response law of charge with shell under fast cook-off stimulation. Nanjing, China: Nanjing University of Science and Technology.
  • Luo, Y. J., and J. R. Liu. 2007. Investigation progress of high energy solid propellant. Energetic Mater. 15 (4):407–10.
  • Wang, J. L., X. Z. Jia, P. G. Jin, H. B. Li, and X. Q. Fang. 2013. The development trend of explosive safety testing and evaluation technology. Hazard. Mater. Security Emerg. Technol. 2:445–50.
  • Wu, S. X., T. F. Zhang, C. Y. Zhou, X. P. Li, and Q. W. Hu. 2019. Application progress of new energetic materials in HTPB composite propellant. Energetic Mater. 27 (4):348–55.
  • Yang, H. W., Y. G. Yu, R. Ye, X. C. Xue, and W. F. Li. 2016. Cook-Off test and numerical simulation of AP/HTPB composite solid propellant. J. Loss Prev. Process 40:1–9. doi:10.1016/j.jlp.2015.11.028.
  • Ye, Q., and Y. G. Yu. 2018. Numerical simulation of fast cook-off characteristics for a large scale solid rocket motor. J. Explos. 41 (6):621–6,631.
  • Ye, Z. W., and Y. G. Yu. 2019. Numerical simulation and unsteady combustion model of AP/HTPB propellant under depressurization by rotation. Propell. Explos. Pyrotech. 44 (4):493–504. doi:10.1002/prep.201800091.
  • Ye, R., Y. Yu, and Y. Cao. 2013. Analysis of micro-scale flame structure of AP/HTPB base bleed propellant combustion. Def. Technol. 9 (4):217–33. doi:10.1016/j.dt.2013.12.001.
  • Zeng, L. H., H. M. Liang, Z. Q. Wang, and Q. Zhang. 2021. Explosion hazard of AP/HTPB in fire condition. Combust. Sci. Technol. 1988942. doi:10.1080/00102202.2021.1988942.
  • Zhang, L. 2016. Experimental and numerical research on thermal security of ammunition in fire. Hefei, China: University of Science and Technology of China.
  • Zhang, M., F. Q. Zhao, Y. Wang, X. L. Chen, Q. Pei, H. X. Xu, H. X. Hao, Y. J. Yang, and H. Li. 2021. Evaluation of graphene-ferrocene nanocomposite as multifunctional combustion catalyst in AP-HTPB propellant. Fuel 302:121229. doi:10.1016/j.fuel.2021.121229.
  • Zhou, J. 2020. Study on the mechanism of mixed melt-cast explosive in slow cook-off, 000464. Taiyuan, China: North University of China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.