217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Atomic Scale Characterization of the Reaction Mechanism of Moisture in Coal Matrix Acting on Coal Spontaneous Combustion

, , , , &
Pages 1642-1661 | Received 25 Jul 2022, Accepted 06 Sep 2022, Published online: 16 Sep 2022

References

  • Ahamed, M. A. A., M. S. A. Perera, S. K. Matthai, P. G. Ranjith, and D. Y. Li. 2019. Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions–a review article. J. Pet. Sci. Eng. 180:901–17. doi:10.1016/j.petrol.2019.06.007.
  • Beamish, B. B., and G. R. Hamilton. 2005. Effect of moisture content on the R-70 self-heating rate of Callide coal. Int. J. Coal Geol. 64 (1/2):133–38. doi:10.1016/j.coal.2005.03.011.
  • Calderón, L. A., E. Chamorro, and J. F. Espinal. 2017. Understanding the kinetics of carbon-hydrogen reaction: Insights from reaction mechanisms on zigzag edges for homogeneous and heterogeneous formation of methane. Carbon 118:597–606. doi:10.1016/j.carbon.2017.03.097.
  • Chen, L. Z., X. Y. Qi, J. Tang, H. H. Xin, and Z. Q. Liang. 2021. Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion. Fuel 293:120436. doi:10.1016/j.fuel.2021.120436.
  • Cheng, G., B. Tan, Z. L. Zhang, S. H. Fu, H. Y. Wang, and F. R. Wang. 2022. Characteristics of coal-oxygen chemisorption at the low-temperature oxidation stage: DFT and experimental study. Fuel 315:123120. doi:10.1016/j.fuel.2021.123120.
  • Choi, H., C. Thiruppathiraja, S. Kim, Y. Rhim, J. Lim, and S. Lee. 2011. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process. Technol 92 (10):2005–10. doi:10.1016/j.fuproc.2011.05.025.
  • Das, S. K., M. Ganguly, M. Ghosh, D. Mani, M. S. Kalpana, and S. Kumar. 2021. Role of tectonic activities on kerogen maturity and carbon stable isotope signature of coal. J. Earth Syst. Sci. 130 (4):1–16. doi:10.1007/s12040-021-01707-x.
  • Deng, J. C., S. K. Ge, H. N. Qi, F. B. Zhou, and B. B. Shi. 2021. Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis. Sci. Total Environ. 777:146080. doi:10.1016/j.scitotenv.2021.146080.
  • Ejlali, A., D. J. Mee, K. Hooman, and B. B. Beamish. 2011. Numerical modelling of the self-heating process of a wet porous medium. Int. J. Heat Mass Transf 54 (25–26):5200–06. doi:10.1016/j.ijheatmasstransfer.2011.08.025.
  • Gao, Y., B. T. Qin, Q. L. Shi, H. J. Liang, and K. Chen. 2019. Effect of igneous intrusions on low-temperature oxidation characteristics of coal in daxing mine, China. Combust. Sci. Technol. 193 (4):577–93. doi:10.1080/00102202.2019.1664492.
  • Hao, H. D., Y. L. Zhang, L. V. Ning, J. F. Wang, C. S. Zhou, and C.-S. Zhou. 2021. Experimental study on microscopic action of different form moisture on coal spontaneous combustion. J. Fuel Chem. Technol. 49 (3):283–92. doi:10.1016/S1872-5813(21)60019-1.
  • Huang, Z., J. Y. Li, Y. K. Gao, Z. L. Shao, and Y. H. Zhang. 2022. Thermal behavior and microscopic characteristics of water-soaked coal spontaneous combustion. Combust. Sci. Technol. 194 (3):636–54. doi:10.1080/00102202.2020.1777993.
  • Küçük, A., Y. Kadıoğlu, and M. Ş. Gülaboğlu. 2003. A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal. humidity of air. Combust. Flame 133 (3):255–61. doi:10.1016/S0010-2180(02)00553-9.
  • Li, Z. H., B. Kong, A. Z. Wei, Y. L. Yang, Y. B. Zhou, and L. Z. Zhang. 2016. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. 23 (23):23593–605. doi:10.1007/s11356-016-7589-x.
  • Li, B., M. J. Li, W. Gao, M. S. Bi, L. Ma, Q. H. Qin, and C. M. Shu. 2020. Effects of particle size on the self-ignition behaviour of a coal dust layer on a hot plate. Fuel 260:116269. doi:10.1016/j.fuel.2019.116269.
  • Liu, J. X., X. M. Jiang, J. Shen, and H. Zhang. 2014. Pyrolysis of superfine pulverized coal. Part 1. mechanisms of methane formation. Energy Convers. Manage. 87:1027–38. doi:10.1016/j.enconman.2014.07.053.
  • Liu, H., Z. H. Li, Y. L. Yang, G. D. Miao, and J. H. Li. 2022a. The temperature rise characteristics of coal during the spontaneous combustion latency. Fuel 326:125086. doi:10.1016/j.fuel.2022.125086.
  • Liu, H. G., Y. B. Tang, and D. J. Ma. 2022b. Experimental investigation of spontaneous combustion of anthracite controlled by the chemical deposition of two-phase (hydroxide and CO2) aerosols. Fuel 319:123765. doi:10.1016/j.fuel.2022.123765.
  • Lu, W., B. L. Guo, G. S. Qi, and W. Y. Yang. 2021. Thermal decomposition model and its reaction kinetic parameters for coal smoldering with the use of TG tests in oxygen-depleted air. Combust. Sci. Technol. 193 (7):1154–72. doi:10.1080/00102202.2019.1684910.
  • Luo, Z. Z., B. T. Qin, Q. L. Shi, H. J. Hu, P. Sheng, and S. Y. Tian. 2022. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal. Fuel 308:121999. doi:10.1016/j.fuel.2021.121999.
  • Nagy, M. E., M. N. Aly, F. A. Gaber, and M. E. Dorrah. 2014. Neutronic behavior of reactor moderated by mixtures of light and heavy waters at different ratios. Ann. Nucl. Energy 63:548–55. doi:10.1016/j.anucene.2013.08.040.
  • Nie, S. B., M. Y. Tang, S. C. Xing, C. Han, R. X. Qin, X. L. Song, and G. L. Dai. 2020. Investigation of water influence on coal based on thermal oxidative degradation kinetics. J. Therm Anal Calorim 139 (2):1265–74. doi:10.1007/s10973-019-08503-2.
  • Niu, H. Y., Y. K. Liu, K. Wu, J. P. Wu, S. L. Li, and H. Y. Wang. 2022. Study on pore structure change characteristics of water-immersed and air-dried coal based on SEM-BET. Combust. Sci. Technol. 1–23. doi:10.1080/00102202.2022.2054272.
  • Onifade, M., and B. Genc. 2018a. Spontaneous combustion of coals and coal-shales. Int. J. Min. Sci. Technol 28 (6):933–40. doi:10.1016/j.ijmst.2018.05.013.
  • Onifade, M., and B. Genc. 2018b. Modelling spontaneous combustion liability of carbonaceous materials. Int. J. Coal Sci. Technol. 5 (2):191–212. doi:10.1007/s40789-018-0209-2.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Prot 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Qiao, L., C. B. Deng, B. Lu, Y. S. Wang, X. F. Wang, H. Z. Deng, and X. Zhang. 2021. Study on calcium catalyzes coal spontaneous combustion. Fuel 307:121884. doi:10.1016/j.fuel.2021.121884.
  • Qu, Z. B., F. Sun, J. H. Gao, T. Pei, Z. P. Qie, L. J. Wang, S. H. Wu, G. Zhao, and S. Wu. 2019. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced·OH radical generation. Combust. Flame 208:27–36. doi:10.1016/j.combustflame.2019.06.017.
  • Wang, H. H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Role of inherent water in low-temperature oxidation of coal. Combust. Sci. Technol. 175 (2):253–70. doi:10.1080/00102200302406.
  • Wang, G., S. B. Wang, J. Li, X. Chen, C. Qin, and S. Ju. 2022. Experimental research on propagation and attenuation of ultrasonic waves in water-bearing coal. Fuel 324:124533. doi:10.1016/j.fuel.2022.124533.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2015. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, C. P., N. N. Yang, Y. Xiao, Z. J. Bai, J. Deng, and C. M. Shu. 2020. Effects of moisture and associated pyrite on the microstructure of anthracite coal for spontaneous combustion. ACS Omega 5 (42):27607–17. doi:10.1021/acsomega.0c04161.
  • Xi, Z. L., K. Xi, L. P. Lu, and X. Li. 2022. Investigation of the influence of moisture during coal self-heating. Fuel 324:124581. doi:10.1016/j.fuel.2022.124581.
  • Xiao, Y., J. F. Zeng, J. W. Liu, X. Lu, and C. M. Shu. 2022. Reactive force field (ReaxFF) molecular dynamics investigation of bituminous coal combustion under oxygen-deficient conditions. Fuel 318:123583. doi:10.1016/j.fuel.2022.123583.
  • Xu, Y. L., Y. C. Bu, M. L. Chen, and L. Y. Wang. 2022. Effect of water-immersion and air-drying period on spontaneous combustion characteristics for long-flame coal. Combust. Sci. Technol. 194 (5):882–97. doi:10.1080/00102202.2020.1788007.
  • Zeng, J., L. F. Fang, Q. S. Li, and Z. Y. Feng. 2021. Assessment of coal spontaneous combustion prediction index gases for coal with different moisture contents. Energy Sources A: Recovery Util. Environ. Eff. 1–13. doi:10.1080/15567036.2021.1900459.
  • Zhai, X. W., B. B. Song, B. Wang, T. Ma, and H. Ge. 2021. Study on the effect and mechanism of water immersion on the characteristic temperature during coal low-temperature oxidation. Nat. Resour. Res. 30 (3):2333–45. doi:10.1007/s11053-021-09854-0.
  • Zhai, X. W., B. Wang, K. Wang, and D. Obracaj. 2019. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal. Combust. Sci. Technol. 191 (7):1101–22. doi:10.1080/00102202.2018.1511544.
  • Zhang, L., L. X. Ling, S. P. Zhao, R. G. Zhang, and B. J. Wang. 2014. Formation mechanism of methane during coal evolution: A density functional theory study. J. Energy Chem. 23 (5):669–78. doi:10.1016/S2095-4956(14)60183-2.
  • Zhang, Y. L., J. F. Wang, J. M. Wu, S. Xue, Z. F. Li, and L. P. Chang. 2015. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. Int. J. Coal Geol. 140:1–8. doi:10.1016/j.coal.2015.01.001.
  • Zhang, Y. L., J. M. Wu, L. P. Chang, J. F. Wang, S. Xue, and Z. F. Li. 2013. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). Int. J. Coal Geol. 120:41–49. doi:10.1016/j.coal.2013.09.005.
  • Zhang, T. J., J. K. Wu, H. Ding, and Z. Q. Ling. 2021. Isotope geochemical features and layered quantitative method of coal seam group gas combined extraction. Arab. J. Geosci. 14 (24):1–15. doi:10.1007/s12517-021-09122-8.
  • Zhang, X. Y., Y. L. Zhang, J. F. Wang, H. D. Hao, Y. G. Wu, and C. S. Zhou. 2020. Study on the effect and mechanism of foreign moisture on coal spontaneous combustion. J. Fuel Chem. Technol. 48 (1):1–10. doi:10.3969/j.issn.0253-2409.2020.01.001.
  • Zhong, X. X., L. Kan, H. H. Xin, B. T. Qin, and G. L. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi:10.1016/j.fuel.2018.09.059.
  • Zhou, W., S. Xue, Y. C. Han, and C. S. Zheng. 2021. Application of stable carbon and hydrogen isotope technology in the determination of gas sources from limestone layers at Shuangliu mine, China. J. Geophys. Eng. 18 (2):282–90. doi:10.1093/jge/gxab013.
  • Zhou, C. S., Y. L. Zhang, J. F. Wang, S. Xue, J. M. Wu, and L. P. Chang. 2017. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. Int. J. Coal Geol. 171:212–22. doi:10.1016/j.coal.2017.01.013.
  • Zhu, H. Q., Y. J. Huo, S. H. Fang, X. He, W. Wang, and Y. L. Zhang. 2020. Quantum chemical calculation of original aldehyde groups reaction mechanism in coal spontaneous combustion. Energy Fuels 34 (11):14776–85. doi:10.1021/acs.energyfuels.0c02474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.