281
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of Premixed Flames Near Lean and Rich Blowout

, , , , &
Pages 1685-1701 | Received 13 Feb 2022, Accepted 11 Sep 2022, Published online: 18 Sep 2022

References

  • Airplane Flying Handbook (FAA-H-8083-3A). 2011. Skyhorse Publishing Inc.
  • Beaudoin, M.-A., A. Landry-Blais, J.-S. Plante, M. Brouillette, and M. Picard. 2016. Transverse acceleration effect on the rich blowout limit of diffusion flames, in Proceedings of Combustion Institute – Canadian Section, University of Waterloo.
  • Bhattacharya, C., S. De, A. Mukhopadhyay, S. Sen, and A. Ray. 2020. Detection and classification of lean blow-out and thermoacoustic instability in turbulent combustors. Appl. Therm. Eng. 180:115808. doi:10.1016/j.applthermaleng.2020.115808.
  • Bush, S., and E. Gutmark. 2005. Characterization of blow out links for a v-gutter stabilized flame, in 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, p. 1116.
  • De, S., A. Bhattacharya, S. Mondal, A. Mukhopadhyay, and S. Sen. 2019. Investigation of flame behavior and dynamics prior to lean blowout in a combustor with varying mixedness of reactants for the early detection of lean blowout. Int. J. Spray Combust. Dyn. 11:1756827718812519. doi:10.1177/1756827718812519.
  • De, S., A. Bhattacharya, S. Mondal, A. Mukhopadhyay, and S. Sen. 2020a. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor. Chaos J. Nonlinear Sci. 30 (4):043115. doi:10.1063/1.5131231.
  • De, S., A. Bhattacharya, A. Mukhopadhyay, and S. Sen. 2021. Early detection of lean blowout in a combustor using symbolic analysis of colour images. Measurement 186:110113. doi:10.1016/j.measurement.2021.110113.
  • De, S., A. Biswas, A. Bhattacharya, A. Mukhopadhyay, and S. Sen. 2020b. Use of flame color and chemiluminescence for early detection of lean blowout in gas turbine combustors at different levels of fuel– air premixing. Combust. Sci. Technol. 192 (5):933–57. doi:10.1080/00102202.2019.1604514.
  • Driscoll, J. F., and C. C. Rasmussen. 2005. Correlation and analysis of blowout limits of flames in high-speed airflows. J. Propuls. Power 21 (6):1035–44. doi:10.2514/1.13329.
  • Gotoda, H., H. Nikimoto, T. Miyano, and S. Tachibana. 2011. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos J. Nonlinear Sci. 21 (1):013124. doi:10.1063/1.3563577.
  • Gupta, S., P. Malte, S. L. Brunton, and I. Novosselov. 2019. Prevention of lean flame blowout using a predictive chemical reactor network control. Fuel 236:583–88. doi:10.1016/j.fuel.2018.09.044.
  • Hui, X., C. Zhang, M. Xia, and C.-J. Sung. 2014. Effects of hydrogen addition on combustion characteristics of n-decane/air mixtures. Combust Flame 161 (9):2252–62. doi:10.1016/j.combustflame.2014.03.007.
  • Hurst, H. E. 1951. Long-Term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116 (1):770–99. doi:10.1061/TACEAT.0006518.
  • Ihlen, E. A. F. E. 2012. Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol 3:141. doi:10.3389/fphys.2012.00141.
  • Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 316 (1–4):87–114. doi:10.1016/S0378-4371(02)01383-3.
  • Laera, D., G. Campa, S. M. Camporeale, E. Bertolotto, S. Rizzo, F. Bonzani, A. Ferrante, and A. Saponaro. 2014. Modelling of thermoacoustic combustion instabilities phenomena: Application to an experimental test rig. Energy Procedia 45:1392–401. doi:10.1016/j.egypro.2014.01.146.
  • Ma, F., Y. Wang, H. Liu, Y. Li, J. Wang, and S. Zhao. 2007. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int. J. Hydrogen Energy 32 (18):5067–75. doi:10.1016/j.ijhydene.2007.07.048.
  • Mishura, Y., and M. Zili. 2018. Stochastic analysis of mixed fractional Gaussian processes. Oxford, UK: Elsevier.
  • Mondal, S., S. De, A. Mukhopadhyay, S. Sen, and A. Ray. 2022. Early prediction of lean blowout from chemiluminescence time series data. Combust. Sci. Technol. 194 (6):1108–35. doi:10.1080/00102202.2020.1804380.
  • Mondal, S., V. R. Unni, and R. Sujith. 2017. Onset of thermoacoustic instability in turbulent combustors: An emergence of synchronized periodicity through formation of chimera-like states. J Fluid Mech 811:659–81. doi:10.1017/jfm.2016.770.
  • Mukhopadhyay, A., and S. Sen. 2019. Fundamentals of combustion engineering. Florida, USA: CRC Press. doi:10.1201/9780429158216.
  • Nair, S., and T. Lieuwen. 2005. Acoustic detection of blowout in premixed flames. J. Propuls. Power 21 (1):32–39. doi:10.2514/1.5658.
  • Nair, V., and R. Sujith. 2014. Multifractality in combustion noise: Predicting an impending combustion instability. J Fluid Mech 747:635–55. doi:10.1017/jfm.2014.171.
  • Nair, V., and R. Sujith. 2015. Intermittency as a transition state in combustor dynamics: An explanation for flame dynamics near lean blowout. Combust. Sci. Technol. 187 (11):1821–35. doi:10.1080/00102202.2015.1066339.
  • O’Connor, J., S. Hemchandra, and T. Lieuwen. 2016. Combustion instabilities in lean premixed systems. In Lean combustion, ed. D. Dunn-Rankin and P. Therkelsen, 231–59. Elsevier.
  • Okubo, M., and T. Kuwahara. 2019. New technologies for emission control in marine diesel engines. Butterworth-: Heinemann.
  • Plee, S., and A. Mellor. 1979. Characteristic time correlation for lean blowoff of bluff-body-stabilized flames. Combust Flame 35:61–80. doi:10.1016/0010-2180(79)90007-5.
  • Rasmussen, C., and J. Driscoll. 2008. Blowout limits of flames in high-speed airflows: Critical damkohler number, in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, p. 4571.
  • Rasmussen, C. C., J. F. Driscoll, C. D. Carter, and K.-Y. Hsu. 2005. Characteristics of cavity-stabilized flames in a supersonic flow. J. Propuls. Power 21 (4):765–68. doi:10.2514/1.15095.
  • Rasmussen, C. C., J. F. Driscoll, K.-Y. Hsu, J. M. Donbar, M. R. Gruber, and C. D. Carter. 2005. Stability limits of cavity-stabilized flames in supersonic flow. Proc. Combust. Inst. 30 (2):2825–33. doi:10.1016/j.proci.2004.08.185.
  • Rock, N., B. Emerson, J. Seitzman, and T. Lieuwen. 2020. Near-Lean blowoff dynamics in a liquid fueled combustor. Combust Flame 212:53–66. doi:10.1016/j.combustflame.2019.10.010.
  • Rock, N., S. Stouffer, T. Hendershott, J. Heyne, D. Blunck, L. Zheng, B. Khandelwal, B. Emerson, E. Mastorakos, and M. Colket. 2021. Lean blowout studies. In Fuel effects on operability of aircraft gas turbine combustors, AIAA progress in astronautics and aeronautics fuel effects on operability of aircraft gas turbine combustors, ed. M. Colket and J. Heyne, 143–196. doi:10.2514/5.9781624106040.0143.0196.
  • Rosfjord, T. J., and J. M. Cohen. 1995. Evaluation of the transient operation of advanced gas turbine combustors. J. Propuls. Power 11 (3):497–504. doi:10.2514/3.23870.
  • Roy, A., and R. I. Sujith. 2021. Fractal dimension of premixed flames in intermittent turbulence. Combust Flame 226:412–18. doi:10.1016/j.combustflame.2020.12.032.
  • Sardeshmukh, S., M. Bedard, and W. Anderson. 2017. The use of oh* and ch* as heat release markers in combustion dynamics. Int. J. Spray Combust. Dyn. 9 (4):409–23. doi:10.1177/1756827717718483.
  • Shanbhogue, S. J., S. Husain, and T. Lieuwen. 2009. Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Prog. Energy Combust. Sci. 35 (1):98–120. doi:10.1016/j.pecs.2008.07.003.
  • Sujith, R. 2021. Thermoacoustic instability: A complex systems perspective. Springer Cham. doi:10.1007/978-3-030-81135-8.
  • Takens, F. 1981. Detecting strange attractors in turbulence. In‘Dynamical systems and turbulence, Warwick 1980, pp. 366–81. Berlin, Heidelberg: Springer.
  • Turns, S. R. 1996. Introduction to combustion, Vol. 287. New York, NY, USA: McGraw-Hill Companies
  • Unni, V. R. 2017. Dynamics of blowout and thermoacoustic instability in a bluff body stabilized turbulent combustor Indian Institute of Technology Madras PhD thesis
  • Unni, V. R., and R. I. Sujith. 2016. Precursors to blowout in a turbulent combustor based on recurrence quantification, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, p. 4649. doi:10.2514/6.2016-4649.
  • Wang, J., X. Fan, T. Zhang, G. Yu, and J. Li. 2011. Measurements of the blowout limits of supercritical aviation kerosene in a supersonic combustor, in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, p. 6108.
  • Wang, Y., and W. Song. 2019. Experimental investigation of influence factors on flame holding in a supersonic combustor. Aerosp. Sci. Technol. 85:180–86. doi:10.1016/j.ast.2018.12.002.
  • Yi, T., and E. J. Gutmark. 2007. Real-Time prediction of incipient lean blowout in gas turbine combustors. AIAA J. 45 (7):1734–39. doi:10.2514/1.25847.
  • Zhang, T., J. Wang, L. Qi, X. Fan, and P. Zhang. 2014. Blowout limits of cavity-stabilized flame of supercritical kerosene in supersonic combustors. J. Propuls. Power 30 (5):1161–66. doi:10.2514/1.B35120.
  • Zheng, H., Y. Li, and L. Cai. 2012. Research on performance of H 2 Rich blowout limit in bluff-body burner. Math. Probl. Eng. 2012:1–28. doi:10.1155/2012/298685.
  • Zubrilin, I. A., N. I. Gurakov, and S. G. Matveev. 2017. Lean blowout limit prediction in a combustor with the pilot flame. Energy Procedia 141:273–81. doi:10.1016/j.egypro.2017.11.105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.