163
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Water Soaking on the Microstructure and Spontaneous Combustion Characteristics of Bituminous Coal During Low−Temperature Oxidation

, , , , ORCID Icon, & show all
Pages 1743-1767 | Received 20 Mar 2022, Accepted 12 Sep 2022, Published online: 21 Sep 2022

References

  • Bai, Z. J., C. P. Wang, J. Deng, F. R. Kang, and C. M. Shu. 2020. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite. Process Saf. Environ. Prot. 142:138–49. doi:10.1016/j.psep.2020.06.017.
  • Bai, Z.J., C.P. Wang, J., Deng, F. R., Kang, and C. M., Shu. 2020. Effects of ionic liquids on the chemical structure and exothermic properties of lignite. Journal of Molecular Liquids 309:113019. doi: 10.1016/j.molliq.2020.113019.
  • Chen, Y. Y., M. Mastalerz, and A. Schimmelmann. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 104:22–33. doi:10.1016/j.coal.2012.09.001.
  • Deng, J. Z.-J. Bai, Y. Xiao, Laiwang, B. C.M. Shu, and C. P. Wang. 2019. Thermogravimetric analysis of the effects of four ionic liquids on the combustion characteristics and kinetics of weak caking coal. Journal of Molecular Liquids 277:876–885. doi:10.1016/j.molliq.2019.01.004.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, and R. L. Geng. 2014. Study on coal spontaneous combustion characteristic temperature of growth rate analysis. Procedia Eng. 84:796–805. doi:10.1016/j.proeng.2014.10.498.
  • Gangopadhyay, P. K., B. Maathuis, and P. V. Dijk. 2005. ASTER-Derived emissivity and coal-fire related surface temperature anomaly: A case study in Wuda, North China. Int. J. Remote Sens. 26 (24):5555–71. doi:10.1080/01431160500291959.
  • Hodges, D. T., J. R. Tucker, and T. S. Hartwick. 1976. Basic physical mechanisms determining performance of the CH3F laser. Infrared Phys. 16 (1–2):175–82. doi:10.1016/0020-0891(76)90030-0.
  • Huang, Z. A., J. Y. Li, Y. K. Gao, Z. L. Shao, and Y. H. Zhang 2020. Thermal behavior and microscopic characteristics of water−soaked coal spontaneous combustion. Combust. Sci. Technol. 1–19. doi: 10.1080/00102202.2020.1777993.
  • Jones, R. E., and D. T. A. Townend. 2010. The oxidation of coal. J. Chem. Technol. Biotechnol. 68:197–201. doi:10.1002/jctb.5000680701.
  • Kadioglu, Y., and M. Varamaz 2003. The effect of moisture content and air−drying on spontaneous combustion characteristics of two Turkish lignites. Fuel 82, 1685–93. doi: 10.1016/S0016−2361(02)00402−7.
  • Kuecuek, A., Y. Kadioglu, and M. S. Guelaboglu. 2003. A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal, humidity of air. Combust. Flame 133:255–61. doi:10.1016/S0010−2180(02)00553−9.
  • Kuenzer, C., J. Z. Zhang, S. Voigt, and W. Wagner 2007. Remotely sensed land−cover changes in the Wuda and Ruqigou−Gulaben coal−mining areas of China. Geol. Coal Fires 219–28. doi: 10.1080/01431160500291959.
  • Li, Z. H., B. Kong, A. Z. Wei, Y. L. Yang, Y. B. Zhou, and L. Z. Zhang 2016. Free radical reaction characteristics of coal low−temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. 23, 23593–605. doi: 10.1007/s11356−016−7589−x.
  • Li, Q.-W., Y. Xiao, K.-Q. Zhong, C.-M. Shu, H.-F. Lü, J. Deng, and S. L. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Mahidin, H. Usui, S. Ishikawa, and Hamdani. 2002. The evaluation of spontaneous combustion characteristics and properties of raw and upgraded Indonesian low rank coals. Int. J. Coal Prep. Util. 22:81–91. doi:10.1080/07349340210958.
  • Mccutcheon, A. L., and M. A. Wilson. 2003. Low-Temperature oxidation of bituminous coal and the influence of moisture. Energy Fuels 17 (4):929–33. doi:10.1021/ef0202788.
  • Miura, K. 2015. Adsorption of water vapor from ambient atmosphere onto coal fines leading to spontaneous heating of coal stockpile. Energy Fuel 30:219–29. doi:10.1021/acs.energyfuels.5b02324.
  • Nakagawa, H., A. Namba, M. Böhlmann, and K. Miura. 2004. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst. Fuel 83 (6):719–25. doi:10.1016/j.fuel.2003.09.020.
  • Nie, S. B., M. Y. Tang, S. C. Xing, and C. Han 2020. Investigation of water influence on coal based on thermal oxidative degradation kinetics. J. Therm. Anal. Calorim. 139, 1265–74. doi: 10.1007/s10973−019−08503−2.
  • Norinaga, K., J. I. Hayashi, N. Kudo, and T. Chiba 1999. Evaluation of effect of predrying on the porous structure of water−swollen coal based on the freezing property of pore condensed water. Energy Fuel 13, 1058–66. doi: 10.1021/ef990024v.
  • Painter, P. C., M. Sobkowiak, and J. Youtcheff. 1987. FT-I.R. study of hydrogen bonding in coal. Fuel 66 (7):973–78. doi:10.1016/0016-2361(87)90338-3.
  • Prakash, A., and R. P. Gupta 1999. Surface fires in Jharia coalfield, India−their distribution and estimation of area and temperature from TM data. Int. J. Remote. Sens. 1935–46. doi: 10.1080/014311699212281.
  • Qu, Z. B., F. Sun, J. H. Gao, T. Pei, Z. P. Qie, L. J. Wang, X. X. Pi, G. B. Zhao, and S. H. Wu. 2019. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced·OH radical generation. Combust. Flame 208:27–36. doi:10.1016/j.combustflame.2019.06.017.
  • Reich, M. H., I. K. Snook, and H. K. Wagenfeld. 1992. A fractal interpretation of the effect of drying on the pore structure of Victorian Brown coal. Fuel 71 (6):669–72. doi:10.1016/0016-2361(92)90170-S.
  • Robyn, F., D. Stuart, and S. Richard. 2009. Moisture induced swelling of coal. Int. J. Coal Prep. Util. 29:298–316. doi:10.1080/19392690903584575.
  • Sensogut, C., A. H. Ozdeniz, and I. B. Gundogdu. 2008. Temperature profiles of coal stockpiles. Energy Source Part A 30:339–48. doi:10.1080/15567030600824882.
  • Song, S., B. T. Qin, H. H. Xin, X. W. Qin, and K. Chen. 2018. Exploring effect of water immersion on the structure and low−temperature oxidation of coal: A case study of Shendong long flame coal, China. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Stracher, G. B., and T. P. Taylor. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59:7–17. doi:10.1016/j.coal.2003.03.002.
  • Wang, C.-P., Z.-J. Bai, Y. Xiao, J. Deng, and C.-M. Shu. 2020a. Effects of FeS2 on the process of coal spontaneous combustion at low temperatures. Process Saf. Environ. Prot. 142:165–73. doi:10.1016/j.psep.2020.06.001.
  • Wang, C. P., Y. Deng, Y. Xiao, J. Deng, C. M. Shu, and Z. G. Jiang. 2022. Gas−heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes. Energy 250:123810. doi:10.1016/j.energy.2022.123810.
  • Wang, C. P., N. N. Yang, Y. Xiao, Z. J. Bai, and C. M. Shu. 2020b. Effects of moisture and associated pyrite on the microstructure of Anthracite coal for spontaneous combustion. ACS Omega 5:27607–17. doi:10.1021/acsomega.0c04161.
  • Wen, G. C., S. Yang, Y. B. Liu, W. B. Wu, D. L. Sun, and K. Wang. 2020. Influence of water soaking on swelling and microcharacteristics of coal. Energy Scie. Eng. 8 (1):50–60. doi:10.1002/ese3.508.
  • Yang, Y. L., Z. H. Li, L. L. Si, F. J. Gu, Y. B. Zhou, Q. Q. Qi, and X. M. Sun. 2016. Study governing the impact of long−term water immersion on coal spontaneous ignition. Arab. J. Sci. Eng. 42:1–11. doi:10.1007/s13369−016−2245−9.
  • Yu, J. L., A. Tahmasebi, Y. N. Han, F. K. Yin, and X. C. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Process. Technol. 106:9–20. doi:10.1016/j.fuproc.2012.09.051.
  • Zhai, X. W., H. Ge, T. Y. Wang, C. M. Shu, and J. Li. 2020. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205:118076. doi:10.1016/j.energy.2020.118076.
  • Zhai, X. W., W. J. Pan, S. B. Wu, and H. Ge. 2019b. Laboratory experimental study on water−soaked−dried bituminous coal’s thermal properties: Implications for spontaneous combustion. J. Therm. Anal. Calorim. 139. doi:10.1007/s10973−019−08769−6.
  • Zhai, X. W., B. Wang, K. Wang, and O. Dariusz 2019a. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low−rank bituminous coal. Combust. Sci. Technol. 191, 1101–22. doi: 10.1080/00102202.2018.1511544.
  • Zhang, Y. H., Y. K. Lai, Z. A. Huang, and Y. K. Gao. 2011. Study on small simulation device of coal spontaneous combustion process. Procedia Eng. 26:922–27. doi:10.1016/j.proeng.2011.11.2257.
  • Zhang, Y. T., Y. B. Zhang, Y. Q. Li, Q. P. Li, J. Zhang, and C. P. Yang. 2020. Study on the characteristics of coal spontaneous combustion during the development and decaying processes. Process Saf. Environ. Prot. 138:9–17. doi:10.1016/j.psep.2020.02.038.
  • Zhong, X. X., L. Kan, H. H. Xin, B. T. Qin, and G. L. Dou 2019. Thermal effects and active group differentiation of low−rank coal during low−temperature oxidation under vacuum drying after water immersion. Fuel 236, 1204–12. doi: 10.1016/j.fuel.2018.09.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.