91
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the Coal Spontaneous Combustion Risk Space Evolution in the Goaf Under Ventilation and Extraction Coupling

, , , &
Pages 1836-1854 | Received 04 Jul 2022, Accepted 16 Sep 2022, Published online: 27 Sep 2022

References

  • Chang, X. H., H. L. Jia, and X. Lu. 2010. Analysis of spontaneous combustion “three zones” in goaf based on matlab. J. China Coal Soc. 35 (04):600–04.
  • Chao, J. K., T. X. Chu, M. G. Yu, X. F. Han, D. M. Hu, W. Liu, and X. L. Yang. 2021. An experimental study on the oxidation kinetics characterization of broken coal under stress loading. Fuel 287:178–286. doi:10.1016/j.fuel.2020.119515.
  • Chen, Y. X., T. X. Chu, X. X. Chen, P. Chen, J. H. Si, and R. Peng. 2021. Numerical simulation study of influencing factors for 3D coal seam gas drainage efficiency. Arabian J. Geosci. 14 (8):678. doi:10.1007/s12517-021-07036-z.
  • Chen, X. K., H. T. Li, Q. H. Wang, and Y. N. Zhang. 2018. Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace. Combust. Sci. Technol. 190 (06):1075–95. doi:10.1080/00102202.2018.1428570.
  • Chu, T. X., Y. X. Chen, and J. H. Si. 2018a. Disturbance effect of oxidative zone induced by roof rood way drainage in gob. J. China Coal Soc. 43 (S2):475–82.
  • Chu, T. X., D. Y. Jiang, M. G. Yu, and Y. X. Chen. 2016b. Study on mechanism of including coal spontaneous combustion and safe gas extraction volume under roof tunnel gas extraction. J. China Coal Soc. 41 (7):1701–10.
  • Chu, T. X., P. Li, and Y. X. Chen. 2019. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel. Int. J. Min. Sci. Technol. 29 (03):491–98. doi:10.1016/j.ijmst.2018.05.002.
  • Cyon, B., and S. J. Kin. 2013. The effect of the particle size distribution and packing structure on the permeability of sintered porous wicks. Int. J. Heat Mass Transf. 61:499–504. doi:10.1016/j.ijheatmasstransfer.2013.02.025.
  • Deng, J., C. K. Lei, Y. Xiao, K. Cao, L. Ma, W. F. Wang, and L. W. Bin. 2018. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 211:458–70. doi:10.1016/j.fuel.2017.09.027.
  • Gao, K., Z. P. Qi, J. Z. Jia, S. N. Li, Z. Y. Liu, and Z. Liu. 2020. Investigation of coupled control of gas accumulation and spontaneous combustion in the goaf of coal mine. AIP Adv. 10 (4):045314. doi:10.1063/5.0004243.
  • Jarosław, B., T. Magdalean, and J. Antoni. 2018. Analysis of influence of types of rocks forming the goaf with caving on the physical parameters of air stream flowing through these gob and adjacent headings. Mechanika 24 (1):43–49.
  • Liang, Y. T., J. Zhang, T. Ren, Z. W. Wang, and S. L. Song. 2018. Application of ventilation simulation to spontaneous combustion control in underground coal mine: A case study from Bulianta colliery. Int. J. Min. Sci. Technol. 28 (2):231–42. doi:10.1016/j.ijmst.2017.12.005.
  • Li, Z., G. H. Ni, L. L. Sun, Q. Sun, S. Li, K. Dong, J. N. Xie, and G. Wang. 2020. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal. Fuel 262:116513. doi:10.1016/j.fuel.2019.116513.
  • Lin, T., and B. Q. Lin. 2019. Time-Dependent dynamic diffusion processes in coal: Model development and analysis. Int. J. Heat Mass Transf. 134:1–9. doi:10.1016/j.ijheatmasstransfer.2019.01.005.
  • Liu, Y., H. Wen, J. Guo, Y. F. Jin, G. M. Wei, and Z. W. Yang. 2020. Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study. Fuel 271:117625. doi:10.1016/j.fuel.2020.117625.
  • Luo, H. S., M. Quintard, G. Debenest, and F. Laoufa. 2012. Properties of a diffuse interface model based on a porous medium theory for solid-liquid dissolution problems. Comput. Geosci. 16 (4):913–32. doi:10.1007/s10596-012-9295-1.
  • Magdalean, T., B. Jarosław, S. Dawid, S. Leszek, and Z. Sergey. 2020. The impact of the ventilation system on the methane release hazard and spontaneous combustion of coal in the area of exploitation—a case study. Energies 13 (18):4891. doi:10.3390/en13184891.
  • Pan, R. K., X. C. Li, H. Z. Li, J. K. Chao, H. L. Jia, and Z. H. Ma. 2021a. Study on the effect of composite hydrogel inhibitors on the heat release characteristics of coal oxidation. Fuel 309:122019. doi:10.1016/j.fuel.2021.122019.
  • Pan, R. K., Z. H. Ma, M. G. Yu, J. K. Chao, Z. Y. Ma, H. L. Jia, and C. Li. 2021b. Mechanical properties of spontaneous coal oxidation. J. China Coal Soc. 46 (09):2949–64.
  • Qian, M. G., and J. L. Xu. 1998. Research on “O”-ring characteristics of overburden rock mining fracture distribution. J. China Coal Soc. 5:20–23.
  • Qin, B. T., L. Li, D. Ma, Y. Lu, X. X. Zhong, and Y. W. Jia. 2019. Control technology for the avoidance of the simultaneous occurrence of a methane explosion and coal spontaneous combustion in a coal mine: A case study. Process Safety Environ. Prot. 103:203–11. doi:10.1016/j.psep.2016.07.005.
  • Si, G. Y., and B. Belle. 2019. Performance analysis of vertical goaf gas drainage holes using gas indicators in Australian coal mines. Int. J. Coal Geol. 216:103301. doi:10.1016/j.coal.2019.103301.
  • Song, Y. W., S. Q. Yang, X. C. Hu, W. X. Song, N. W. Sang, J. W. Cai, and Q. Xu. 2019. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Safety Environ. Prot. 129:8–16. doi:10.1016/j.psep.2019.06.013.
  • Su, H. T., F. B. Zhou, X. L. Song, B. B. Shi, and S. H. Sun. 2016. Risk analysis of coal self ignition in longwall gob: A modeling study on three-dimensional hazard zones. Fire Safety J. 83:54–65. doi:10.1016/j.firesaf.2016.04.002.
  • Tang, M. Y., B. Y. Jiang, R. Q. Zhao, Z. Q. Yin, and G. L. Dai. 2016. Numerical analysis on the influence of gas extraction on air leakage in the gob. J. Nat. Gas. Sci. Eng. 33:278–86. doi:10.1016/j.jngse.2016.05.006.
  • Tang, Z. Q., S. Q. Yang, G. Xu, and M. Sharifzadeh. 2019. Disaster-Causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars. Process Safety Environ. Prot. 132:182–88. doi:10.1016/j.psep.2019.09.036.
  • Wang, D. M., Z. L. Shao, and Y. F. Zhu. 2021. Several scientific issues on major thermodynamic disasters in coal mines. J. China Coal Soc. 46 (1):57–64.
  • Wang, C. J., S. Q. Yang, and X. W. Li. 2018. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible coal due to the gas drainage of a gob. Process Safety Environ. Prot. 118:296–306. doi:10.1016/j.psep.2018.06.028.
  • Xia, T. Q., F. B. Zhou, F. Gao, J. H. Kang, J. S. Liu, and J. W. Wang. 2015. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol. 141:1–12. doi:10.1016/j.coal.2015.02.007.
  • Xia, T. Q., F. B. Zhou, X. X. Wang, Y. F. Zhang, Y. M. Li, J. H. Kang, and J. S. Liu. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–96. doi:10.1016/j.fuel.2016.05.090.
  • Xu, J. L., and M. G. Qian. 2000. Study on the influence of key strata movement on subsidence. J. China Coal Soc. 2:122–26.
  • Yang, S. Q., Y. Qin, J. W. Sun, C. L. Jiang, and J. Y. Lun. 2014. Research on coupling hazard mechanism of mine gas and coal fire for a gassy and high spontaneous combustion propensity coal seam. J. China Coal Soc. 39 (06):1094–101.
  • Yue, N. F., Y. Jin, G. L. Chen, M. F. Sun, and X. C. Ran. 2021. Research on the division method of the dangerous area of coal spontaneous combustion in goaf based on multi-parameter. Min. Saf. Environ. Prot. 48 (04):1–5+11.
  • Zhang, M. R., S. Q. Yang, J. W. Cheng, W. X. Song, H. L. Jiao, and G. X. Zhang. 2013. Spontaneous heating and gas drainage on a coal face with “four-gate road” and overlying drainage tunnel. J. China Univ. Min. Technol. 42 (2):53–158.
  • Zheng, Y. N., Q. Z. Li, G. Y. Zhang, Y. Zhao, P. F. Zhu, X. Ma, and X. W. Li. 2021. Study on the coupling evolution of air and temperature field in coal mine goafs based on the similarity simulation experiments. Fuel 283:118905. doi:10.1016/j.fuel.2020.118905.
  • Zuo, Q. L., J. S. Li, and Y. J. Wang. 2021a. Distribution law for the danger area for coal spontaneous combustion in a dynamic goaf with low air leakage speed. Therm. Sci. 25 (5):3229–37. doi:10.2298/TSCI200602308Z.
  • Zuo, Q. L., Y. J. Wang, and J. S. Li. 2021b. Study on the oxidation and heating characteristics of residual coal in goafs under different air-leakage conditions. Therm. Sci. 25 (5):3293–302. doi:10.2298/TSCI200609314Z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.