133
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Research on a Spontaneous Combustion Prevention System in Deep Mine: A Case Study of Dongtan Coal Mine

, , , , &
Pages 1855-1874 | Received 03 Aug 2022, Accepted 16 Sep 2022, Published online: 21 Sep 2022

References

  • Bai, G., J. Su, Z.G. Zhang, A.C. Lan, X.H. Zhou, F. Gao, and Zhou, J.B. 2022. Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study. Energy 238:121674.
  • Chao, J.K., Q.Y. Gu, R.K. Pan, X.F. Han, D.M. Hu, W. Liu, and S. Liu. 2022. Influence of a high-temperature environment in deep mining on the characteristics of coal spontaneous combustion. Combust. Sci. Technol 1–19. doi:10.1080/00102202.2022.2093110.
  • Colaizzi, G.J. 2004. Prevention, control and/or extinguishment of coal seam fires using cellular grout. Int. J. Coal Geol 59 (1–2):75–81. doi:10.1016/j.coal.2003.11.004.
  • Deng, J., Y. Yang, Y.N. Zhang, B. Liu, and C.M. Shu. 2018. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion. Energy 60:1174–85. doi:10.1016/j.energy.2018.07.040.
  • Du, B., Y.T. Liang, and F.C. Tian. 2021. Detecting concealed fire sources in coalfield fires: An application study. Fire Saf. J 121:103298. doi:10.1016/j.firesaf.2021.103298.
  • Fan, Y.J., Y.Y. Zhao, X.M. Hu, M.Y. Wu, and D. Xue. 2020. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications. Fuel 263:116693. doi:10.1016/j.fuel.2019.116693.
  • Fu, W., Z.G. Lu, and Q.X. Feng. 2013. Application of fire control technology in goaf behind fully mechanized caving face. Shandong Coal Sci Technol 04:207–08.
  • Hou, J.H., Q.S. Zhao, and H.J. Zhao. 2020. Key technologies for comprehensive prevention and control of goaf disaster in dongtan coal mine. Coal Technol 39 (02):141–43.
  • Jia, H.L., Y. Yang, W.X. Ren, Z.H. Kang, and J.T. Shi. 2021. Experimental study on the characteristics of the spontaneous combustion of coal at high ground temperatures. 10.1080/00102202.2021.1895775.
  • Karaoulis, M., A. Revil, and D. Mao. 2014. Localization of a coal seam fire using combined self-potential and resistivity data. Int. J. Coal Geol 128–129:109–18. doi:10.1016/j.coal.2014.04.011.
  • Kong, B., E.Y. Wang, W. Lu, and Z.H. Li. 2020. Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires. Energy 189:116144. doi:10.1016/j.energy.2019.116144.
  • Li, X.L., Z.Y. Cao, and Y.L. Xu. 2020b. Characteristics and trends of coal mine safety development. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects :1–14. doi:10.1080/15567036.2020.1852339.
  • Li, Y.S., X.M. Hu, W.M. Cheng, Z. Shao, D. Xue, Y.Y. Zhao, and W. Lu. 2020c. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature. Fuel 263:116779. doi:10.1016/j.fuel.2019.116779.
  • Li, H., Tian, L., Huang, B., Lu, J., Shi, S., Lu, Y., Huang, F., Liu, Y., and Zhu, X. 2020d. Experimental Study on Coal Damage Subjected to Microwave Heating. Rock Mechanics and Rock Engineering 53 (12):5631–5640.
  • Lu, W., Y.J.Z. Cao, and J.C. Tien. 2017a. Method for prevention and control of spontaneous combustion of coal seam and its application in mining field. Int. J. Min. Sci. Techno 27 (5):839–46. doi:10.1016/j.ijmst.2017.07.018.
  • Lu, W., XX, Q. B. Dm, F.C. Tian, G.Y. Shi, S.J. Dong, and S. Dong. 2015b. Novel approach for extinguishing large-scale coal fires using gas–liquid foams in open pit mines. Environ. Sci Pollute. Res 22 (23):18363–71. doi:10.1007/s11356-015-5385-7.
  • Lu, W., B.L. Guo, G.S. Qi, W.M. Cheng, and W.Y. Yang. 2020a. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution. Fuel 265:117032. doi:10.1016/j.fuel.2020.117032.
  • Lu, W., J. Li, K. Wang, H. Ma, and Z. Ye. 2015a. Research on positive pressure beam tube monitoring method for prediction and prediction of coal spontaneous combustion. Coal Sci. Technol 43 (10):77–80.
  • Lu, W., J.M. Wen, D. Wang, W.R. Zhang, X.M. Hu, H. Wu, and B. Kong. 2021. Study on gas transport characteristics of positive pressure beam tube system and its application to coal spontaneous combustion early warning. J. Clean. Prod. 316:128342. doi:10.1016/j.jclepro.2021.128342.
  • Ma, L., R.Z. Guo, M.M. Wu, W.F. Wang, L.F. Ren, and G.M. Wei. 2020. Experimental study on adsorbing of flue gas and its application in preventing spontaneous combustion of coal. Process. Saf. Environ 142:370–79. doi:10.1016/j.psep.2020.06.035.
  • Qin, H.L., and B.Z. Chen (2003) Development and application of coal mine fire prevention and control technology. 2003 Annual Conference of China Association for Science and Technology, Shenyang, China. 177–81
  • Qin, B.T., G.L. Dou, Y. Wang, H.H. Xin, L.Y. Ma, and D.M. Wang. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35. doi:10.1016/j.fuel.2016.11.045.
  • Qin, B.T., Y.W. Jia, Y. Lu, Y. Li, D.M. Wang, and C.X. Chen. 2015. Micro fly-ash particles stabilized pickering foams and its combustion-retardant characteristics. Fuel 154:174–80. doi:10.1016/j.fuel.2015.03.078.
  • Qin, L., X. Zhang, C. Zhai, H.F. Lin, Lin, S.H., Wang, P., and Li, S.G. 2022. Advances in Liquid Nitrogen Fracturing for Unconventional Oil and Gas Development: A Review. Energy & Fuels 36 (6): 2971–2992. doi:10.1021/acs.energyfuels.2c00084.
  • Ren, X.F., X.M. Hu, W.M. Cheng, S.S. Bian, Y.Y. Zhao, M.Y. Wu, D. Xue, Y.S. Li, W. Lu, and P. Wang. 2020. Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS). Fuel 267:117261. doi:10.1016/j.fuel.2020.117261.
  • Shao, Z.L., D.M. Wang, Y.M. Wang, X.X. Zhong, X.F. Tang, and D.D. Xi. 2016. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography. Geophys. J. Int 204 (2):1316–31. doi:10.1093/gji/ggv525.
  • Shao, Z.L., D.M. Wang, Y.M. Wang, Zhong XX., and X. Zhong. 2014. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. J. Appl. Geophys. 104:64–74. doi:10.1016/j.jappgeo.2014.02.014.
  • Shi, B.B., L.J. Ma, W. Dong, and F.B. Zhou. 2015. Application of a novel liquid nitrogen control technique for heat stress and fire prevention in underground mines. J. Occup. Environ. Hyg 12 (8):D168–D177. doi:10.1080/15459624.2015.1019074.
  • Shi, Q.L., and B.T. Qin. 2019. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal. Fuel 254:115558. doi:10.1016/j.fuel.2019.05.141.
  • Tang, Y.B. 2018. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. J. Energy Inst 91 (5):639–45. doi:10.1016/j.joei.2017.06.006.
  • Wang, C.Y. 1997. The division and treatment of “three zones” of oxidative spontaneous combustion in goaf of 4302 fully mechanized caving face in Dongtan Coal Mine. Saf. Coal Mine 09:10–12.
  • Wang, K., H.H. Fan, P. Gao, Y.Z. He, and P. Shu (2021) Spontaneous combustion characteristics of wetting coal under different prepyrolysis temperatures. ACS Omega.5: 33347–56.
  • Wang, X.Y., J.L. Li, and J. Chen. 2009. Research on comprehensive prevention and control technology of spontaneous fire in fully mechanized caving face. Coal Mine Modernization S1:12–13.
  • Wang, D., W. Lu, J. Li, S. Xu, and C. Qin. 2019. Research on the high positive pressure beam tube monitoring system for the common pipeline of coal gas transmission and control. Coal Sci. Technol 47 (12):141–44.
  • Wei, L. (2011) Mine underground fire and toxic and harmful gas positive pressure beam tube monitoring system. CN201953414U. China
  • Wen, H., J.C. Xu, C.Y. Wang, and X.H. Zhang. 2003. Dense gel fire extinguishing technology applied in Dongtan Mine. Coal Sci. Technol 01:39–41.
  • Xue, D., X.M. Hu, W.M. Cheng, J.F. Wei, Y.Y. Zhao, and L. Shen. 2020. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications. Fuel 264:116903. doi:10.1016/j.fuel.2019.116903.
  • Xue, S., J. Wang, J. Xie, and J. Wu. 2010. A laboratory study on the temperature dependence of the radon concentration in coal. Int. J. Coal Geol 83 (1):48–82. doi:10.1016/j.coal.2010.03.003.
  • Yan, S.Y., K. Shi, Y. Li, J.L. Liu, and H.F. Zhao. 2020. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China. Front Earth Sci. PRC 14 (1):1–12. doi:10.1007/s11707-019-0757-9.
  • Yuan, B.Q. 2018. Control technique of spontaneous combustion in fully mechanized stope during period of end caving under complex mining influence. IOP Conf. Ser.: Earth Environ. Sci. 108:032019. doi:10.1088/1755-1315/108/3/032019.
  • Zhai, X.W., S.B. Wu, K. Wang, C. Drebenstedt, and J.Y. Zhao. 2017. Environment influences and extinguish technology of spontaneous combustion of coal gangue heap of Baijigou coal mine in China. Energy Procedia 136:66–72. doi:10.1016/j.egypro.2017.10.326.
  • Zhang, Q., X.M. Hu, M.Y. Wu, Y.Y. Zhao, and C. Yu. 2018. Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials. J. Appl. Polym. Sci. 135 (27):46460. doi:10.1002/app.46460.
  • Zhang, Q.S., X.Y. Wang, and H.D. Xie. 2009. Application of high power retarding foam to prevention and Control of coal spontaneous combustion in Dongtan mine. Coal Sci. Technol 37 (10):39–41.
  • Zhang, L.L., W.J. Wu, J. Wei, Y.P. Bian, and H.G. Luo. 2021. Preparation of foamed gel for preventing spontaneous combustion of coal. Fuel 300:121024. doi:10.1016/j.fuel.2021.121024.
  • Zhao, Q., and Y.J. Zhou. 2020. Research on prevention and control technology of coal spontaneous combustion in fully mechanized caving face with complicated conditions. China Coal 46 (02):62–65.
  • Zhou, B., J.M. Wu, J.F. Wang, and Y.G. Wu. 2018. Surface-Based radon detection to identify spontaneous combustion areas in small abandoned coal mine gobs: Case study of a small coal mine in China. Process. Saf. Environ 119:223–32. doi:10.1016/j.psep.2018.08.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.