720
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Water Droplet Interaction with Turbulent Premixed and Spray Flames Using Carrier Phase Direct Numerical Simulations

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1411-1433 | Received 12 Apr 2022, Accepted 26 Aug 2022, Published online: 28 Feb 2023

References

  • Arabaci, E., Y. İçingür, H. Solmaz, A. Uyumaz, and E. Yilmaz. 2015. Energy conversion and management 98: 89–97.
  • Arias, P. G., H. G. Im, P. Narayanan, and A. Trouvé. 2011. A computational study of non-premixed flame extinction by water spray Proceedings of the Combustion Institute 33(2): 2591–97.
  • Batchelor, G., and A. Townsend. 1948. Decay of turbulence in final period. Proceedings of Royal Society. A194, pp. 527–543.
  • Bibrzycki J., and T. Poinsot. 2010. Reduced chemical kinetic mechanisms for methane combustion in O2/N2 and O2/CO2 atmosphere, working note ECCOMET WN. Tech. rep. CFD/10/17, CERFACS.
  • Chakraborty, N., C. Kasten, U. Ahmed, and M. Klein. 2021. Evolutions of strain rate and dissipation rate of kinetic energy in turbulent premixed flames. Phys. Fluids 33 (12):125132. doi:10.1063/5.0076373.
  • Chen, J. H., A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende and C. S. Yoo. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discovery. 2(1):2.1. doi:10.1088/1749-4699/2/1/015001.
  • Fernández-Tarrazo, E., A. Sanchez, A. Linan, and F. Williams. 2006. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147 (1–2):32–38. doi:10.1016/j.combustflame.2006.08.001.
  • Fujita, A., H. Watanabe, R. Kurose, and S. Komori. 2013. Two-dimensional direct numerical simulation of spray flames-part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel 104:515–25. doi:10.1016/j.fuel.2012.08.044.
  • Hasslberger, J., G. Ozel-Erol, N. Chakraborty, M. Klein, and R. S. Cant. 2021. Physical effects of water droplets interacting with turbulent premixed flames: A direct numerical simulation analysis. Combust. Flame 229:229. doi:10.1016/j.combustflame.2021.111404.
  • Hayashi, S., S. Kumagai, and T. Sakai. 1977. Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol 15 (5–6):169–77. doi:10.1080/00102207708946782.
  • Jenkins K. W., and R. S. Cant. 2002. Curvature effects on flame kernels in a turbulent environment. Proceedings of the Combustion Institute 29(2): 2023–29.
  • Keil, F. B., M. Amzehnhoff, U. Ahmed, N. Chakraborty, and M. Klein. 2021. Comparison of flame propagation statistics extracted from direct numerical simulation based on simple and detailed chemistry—part 1: Fundamental flame turbulence interaction. Energies 14 (17):5548. doi:10.3390/en14175548.
  • Klein, M., A. Herbert, H. Kosaka, B. Böhm, A. Dreizler, N. Chakraborty, V. Papapostolou, H. G. Im, and J. Hasslberger. 2020. Evaluation of flame area based on detailed chemistry DNS of premixed turbulent hydrogen-air flames in different regimes of combustion. Flow Turbul. Combust 104 (2–3):403–19. doi:10.1007/s10494-019-00068-2.
  • Kotob, M. R., T. Lu, and S. S. Wahid. 2020. Experimental study of direct water injection effect on NOx reduction from the gas fuel. J. Adv. Res. Fluid Mech. Therm. Sci. 76 (3):92–108. doi:10.37934/arfmts.76.3.92108.
  • Lawes, M., and A. Saat 2011. Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions 33(2):2047–54.
  • Lellek, S. E. M. 2017. Pollutant Formation in Premixed Natural Gas SwirlFlames with Water Injection. PhD thesis. Technische Universität München.
  • Malkeson, S. P. D. H. Wacks, and N. Chakraborty. 2020. Statistical behaviour and modelling of fuel mass fraction dissipation rate transport in turbulent flame-droplet interaction: A direct numerical simulation study. Flow Turbul. Combust 105 (1):237–66. doi:10.1007/s10494-019-00083-3.
  • Merola, S. S., A. Irimescu, and B. M. Maria Vaglieco. 2020. Influence of water injection on combustion identified through spectroscopy in an optical direct injection spark ignition engine. Fuel 273:273. doi:10.1016/j.fuel.2020.117729.
  • Mingrui, W., N. Thanh Sa, R. F. Turkson, L. Jinping, and G. Guanlun. 2017. Water injection for higher engine performance and lower emissions. J. Energy Inst 90 (2):285–99. doi:10.1016/j.joei.2015.12.003.
  • Neophytou, A., and E. Mastorakos. 2009. Simulations of laminar flame propagation in droplet mists. Combust. Flame 156 (8):1627–40. doi:10.1016/j.combustflame.2009.02.014.
  • Neophytou, A. E. Mastorakos, and R. S. Cant. 2010. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame 157 (6):1071–86. doi:10.1016/j.combustflame.2010.01.019.
  • Neophytou, A., E. Mastorakos, and R. S. Cant. 2012. The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame 159 (2):641–64. doi:10.1016/j.combustflame.2011.08.024.
  • Nicoli, C., B. Denet, and P. Haldenwang. 2014. Lean flame dynamics through a 2D lattice of alkane droplets in air. Combust. Sci. Technol 186 (2):103–19. doi:10.1080/00102202.2013.847930.
  • Nicoli, C., P. Haldenwang, and B. Denet. 2016. Spray-flame dynamics in a rich droplet array. Flow Turbul. Combust 96 (2):377–89. doi:10.1007/s10494-015-9675-4.
  • Nicoli, C., P. Haldenwang, and B. Denet. 2019. Premixed flame dynamics in presence of mist. Combust. Sci. Technol 191 (2):197–207. doi:10.1080/00102202.2018.1453728.
  • Ozel-Erol, G., J. Hasslberger M. Klein, and N. Chakraborty. 2019. A direct numerical simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol 191 (5–6):833–67. doi:10.1080/00102202.2019.1576649.
  • Pera, C., S. Chevillard, and J. Reveillon. 2013. Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame 160 (6):1020–32. doi:10.1016/j.combustflame.2013.01.009.
  • Reveillon, J., and L. Vervisch. 2005. Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J Fluid Mech 537 (–1):317–47. doi:10.1017/S0022112005005227.
  • Schroll P., A. P. Wandel, R. S. Cant and E. Mastorakos. 2009. Direct numerical simulations of autoignition in turbulent two- phase flows. Proceedings of the Combustion Institute 32(2):2275–82.
  • Shahpouri, S., and E. Houshfar. 2019. Nitrogen oxides reduction and performance enhancement of combustor with direct water injection and humidification of inlet air. Clean Technol. Environ. Policy 21 (3):667–83. doi:10.1007/s10098-019-01666-4.
  • Sreedhara, S., and K. Y. Huh. 2007. Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proceedings of the Combustion Institute 31(2):2335–42.
  • Sun, X., J. Ning, X. Liang, G. Jing, Y. Chen, and G. Chen. 2022. Effect of direct water injection on combustion and emissions characteristics of marine diesel engines. Fuel 309:309. doi:10.1016/j.fuel.2021.122213.
  • Takasaki, K., T. Fukuyoshi, and S. Abe. 1998. Improvement of diesel combustion with stratified fuel/water injection system. In: Proceedings of the 4th C OMODIA Fukuoka, Japan, pp. 57–62.
  • Tesfa, B., R. Mishra, F. Gu, and A. D. Ball. 2012. Water injection effects on the performance and emission characteristics of a CI engine operating with biodiesel. Renewable Energy 37 (1):333–44. doi:10.1016/j.renene.2011.06.035.
  • Thomas, G. O., A. Jones, and M. J. Edwards. 1991. Influence of water sprays on explosion development in fuel-air mixtures. Combust. Sci. Technol 80 (1–3):47–61. doi:10.1080/00102209108951776.
  • Turquand, C., V. Papapostolou, S. F. Ahmed, and N. Chakraborty. 2019. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures. Combust. Flame 201:104–17. doi:10.1016/j.combustflame.2018.12.015.
  • Wacks, D. H., N. Chakraborty, and E. Mastorakos. 2016. Statistical analysis of turbulent flame- droplet interaction: A direct numerical simulation study. Flow Turbul. Combust 96 (2):573–607. doi:10.1007/s10494-015-9652-y.
  • Wandel, A. P., N. Chakraborty and E. Mastorakos. 2009. Direct numerical simulations of turbulent flame expansion in fine sprays. Proceedings of the Combustion Institute 32(2):2283–90.
  • Wang, Y., and C. J. Rutland 2005. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proceedings of the Combustion Institute 30(1):893–900.
  • Wray, A. A. 1990. Minimal storage time advancement schemes for spectral methods. In: NASA Ames Research Center, California, Report No. MS202.
  • Yamashita, H., M. Shimada, and T. Takeno 1996. Symposium (International) on Combustion 26:27–34.
  • Zeuch, T., G. Moréac, S. S. Ahmed, and F. Mauss. 2008. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction. Combust. Flame 155 (4):651–74. doi:10.1016/j.combustflame.2008.05.007.
  • Zhang, P., Y. Zhou, X. Cao, X. Gao, and M. Bi. 2014. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog. Saf Sci 62:1–7. doi:10.1016/j.ssci.2013.07.027.