119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of Plane and Cellular Detonation Wave Suppression in Hydrogen-Air Mixture by Inert Porous Filters

ORCID Icon
Pages 1389-1410 | Received 11 Apr 2022, Accepted 12 Aug 2022, Published online: 20 Feb 2023

References

  • Bedarev, I. A. 2019. Micro-level modeling of the detonation wave attenuation by inert particles. Thermal Sci. 23 (2):439. doi:10.2298/TSCI19S2439B.
  • Bedarev, I. A., and A. V. Fedorov. 2006. Comparative analysis of three mathematical models of hydrogen ignition. Combust. Explos. Shock Waves 42 (1):19. doi:10.1007/s10573-006-0002-1.
  • Bedarev, I. A., A. V. Fedorov, and A. V. Shul’gin. 2018. Computation of traveling waves in a heterogeneous medium with two pressures and a gas equation of state depending on phase concentrations. Comput. Math. Math. Phys. 58:775. doi:10.1134/S0965542518050044.
  • Bedarev, I. A., K. V. Rylova, and A. V. Fedorov. 2015. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen-air mixtures. Combust. Explos. Shock Waves 51 (5):528. doi:10.1134/S0010508215050032.
  • Bivol, G. Y., S. V. Golovastov, and D. Alexandrova. 2019. Evolution of detonation wave and parameters of its attenuation when passing along a porous Coating. Exp. Therm. Fluid Sci. 100:124. doi:10.1016/j.expthermflusci.2018.08.030.
  • Bivol, G. Y., S. V. Golovastov, and V. V. Golub. 2016. Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen-air mixture at atmospheric pressure. J. Loss Prev. Process Ind. 43:311. doi:10.1016/j.jlp.2016.05.032.
  • Bivol, G. Y., S. V. Golovastov, and V. V. Golub. 2018. Detonation suppression in hydrogen–air mixtures using porous coatings on the Walls. Shock Waves 28:1011. doi:10.1007/s00193-018-0831-3.
  • Boiko, V. M., V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavskii, and V. M. Fomin. 1996. Interaction of a shock wave with a cloud of particles. Combust. Expl. Shock Waves 32 (2):191. doi:10.1007/BF02097090.
  • Borisov, A. A., B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko. 1975. Effect of inert solid particles on detonation in a combustible gas mixture. Combust. Explos Shock Waves 11 (6):774. doi:10.1007/BF00744778.
  • Bulat, P. V., T. E. Ilyina, K. N. Volkov, M. V. Silnikov, and M. V. Chernyshov. 2017. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening. Acta Astronaut. 135:131. doi:10.1016/j.actaastro.2016.08.036.
  • Chang, E. J., and K. Kailasanath. 2003. Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12:333. doi:10.1007/s00193-002-0170-1.
  • Fedorov, A. V., N. N. Fedorova, O. S. Vankova, and D. A. Tropin (2018). Verification of kinetic schemes of hydrogen ignition and combustion in air. AIP Conference Proceedings: 15th All-Russian Seminar on Dynamics of Multiphase Media (DMM 2017), Novosibirsk, Russia, 2017 October 3–5, vol. 1939, 020019. doi:10.1063/1.5027331.
  • Fedorov, A. V., and D. A. Tropin. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Explos. Shock Waves 47:464. doi:10.1134/S0010508211040101.
  • Fedorov, A. V., and D. A. Tropin. 2013. Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation. Combust. Expl. Shock Waves 49 (2):178. doi:10.1134/S0010508213020081.
  • Fedorov, A. V., D. A. Tropin, and I. A. Bedarev. 2010. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust. Explos. Shock Waves 46 (3):332. doi:10.1007/s10573-010-0046-0.
  • Gottiparthi, K. C., F. Genin, S. Srinivasanz, and S. Menon. 2009. Simulation of cellular detonation structures in ethylene-oxygen mixtures. AIAA 2009-437:1–13 .
  • Gottiparthi, K. C., and S. Menon. 2012. A study of interaction of clouds of inert particles with detonation in gases. Combust. Sci. Technol. 184 (3):406. doi:10.1080/00102202.2011.641627.
  • Guirao, C. M., R. Knystautas, J. Lee, W. Benedick, and M. Berman. 1982. Hydrogen-air detonations. Proc Combust Inst 19:583. doi:10.1016/S0082-0784(82)80232-4.
  • Ju, Y., and C. K. Law. 2002. Propagation and quenching of detonation waves in particle laden mixtures. Combust. Flame 129:356. doi:10.1016/S0010-2180(02)00342-5.
  • Nigmatulin, R. I. 1990. Dynamics of multiphase media: V. 1-2. New York, USA: Hemisphere Publ. Corp.
  • Osnes, A. N., M. Vartdal, M. G. Omang, and B. A. P. Reif. 2019. Computational analysis of shock-induced flow through stationary particle clouds. Int. J. Multiphase Flow 114:268. doi:10.1016/j.ijmultiphaseflow.2019.03.010.
  • Papalexandris, M. V. 2004. Numerical simulation of detonations in mixtures of gases and solid particles. J .Fluid Mech. 507:95. doi:10.1017/S0022112004008894.
  • Papalexandris, M. V. 2005. Influence of inert particles on the propagation of multidimensional detonation waves. Combust. Flame 141:216. doi:10.1016/j.combustflame.2004.12.017.
  • Peng, X., S. Wang, G. Rao, B. Li, and W. Chen. 2022. Investigation of the interaction mechanism of solid particles under shock waves. Shock Vib. 3791156:1. Article ID.
  • Pinaev, A. V., A. A. Vasil’ev, and P. A. Pinaev. 2015. Suppression of gas detonation by a dust cloud at reduced mixture pressures. Shock Waves 25:267. doi:10.1007/s00193-014-0543-2.
  • Radulescu, M. I., and J. H. S. Lee. 2002. The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131:29. doi:10.1016/S0010-2180(02)00390-5.
  • Saito, T. 2002. Numerical analysis of dusty-gas flows. J. Comput. Phys. 176:129–44. doi:10.1006/jcph.2001.6971.
  • Shafiee, H., and M. H. Djavareshkian. 2014. CFD simulation of particles effects on characteristics of detonation. Int. j. comput. sci. eng. 6:466. doi:10.7763/IJCTE.2014.V6.911.
  • Shepherd, J. E., F. Pintgen, J. M. Austin, and C. A. Eckett (2002). The structure of the detonation front in gases. AIAA Paper. 2002-0773, 1.
  • Singh, S., J. M. Powers, and S. Paolucci. 1999. Detonation solutions from reactive Navier-stokes equations. AIAA 99-0966:1.
  • Sugiyama, Y., H. Ando, K. Shimura, and A. Matsuo. 2019. Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD–DEM model. Shock Waves 29:499. doi:10.1007/s00193-018-0878-1.
  • Tahsini, A. M. 2016. Detonation wave attenuation in dust-free and dusty air. J. Loss Prev. Process Ind. 39:24. doi:10.1016/j.jlp.2015.11.006.
  • Teodorczyk, A., and F. Benoan. 1996. Interaction of detonation with inert gas zone. Shock Waves 6:211. doi:10.1007/BF02511378.
  • Tien, J. H., and R. J. Stalker. 2002. Release of chemical energy by combustion in a supersonic mixing layer of hydrogen and air. Combust. Flame 130:329. doi:10.1016/S0010-2180(02)00371-1.
  • Tropin, D. A., and I. A. Bedarev. 2021a. Physical and mathematical modeling of interaction of detonation waves with inert gas plugs. J. Loss Prev. Process Ind. 72:104595. doi:10.1016/j.jlp.2021.104595.
  • Tropin, D. A., and I. A. Bedarev. 2021b. Problems of detonation wave suppression in hydrogen-air mixtures by clouds of inert particles in one- and two-dimensional formulation. Combust. Sci. Technol. 193 (2):197. doi:10.1080/00102202.2020.1763323.
  • Tropin, D. A., and E. S. Bochenkov. 2020. Influence of inert particles on the ignition processes of hydrogen-silan-air mixtures. Int. J. Hydrogen Energy 45 (35):17953. doi:10.1016/j.ijhydene.2020.04.220.
  • Tropin, D. A., and A. V. Fedorov. 2014. Mathematical modeling of detonation wave suppression by cloud of chemically inert solid particles. Combust. Sci. Technol. 186:1690. doi:10.1080/00102202.2014.935637.
  • Tropin, D. A., and A. V. Fedorov. 2019. Physical and mathematical modeling of interaction of detonation waves in mixtures of hydrogen, methane, silane, and oxidizer with clouds of inert micro- and nanoparticles. Combust. Sci. Technol. 191 (1):275. doi:10.1080/00102202.2018.1459584.
  • Wolanski, P., J. C. Liu, C. W. Kaufman, J. A. Nicholls, and M. Sichel. 1988. The effects of inert particles on methane-air detonations. Arch. Comput. 8 (1):15.
  • Wolinski, M., and P. Wolanski. 1987. Gaseous detonation processes in presence of inert particles. Arch. Comput. 734:353.
  • Xiong, X., K. Gao, J. Zhanga, B. Li, L. Xie, D. Zhang, and R. A. Mensah. 2021. Interaction between shockwave and solid particles: Establishing a model for the change of cloud’s expansion rate. Powder Technol. 381:632. doi:10.1016/j.powtec.2020.12.033.
  • Yang, H. N., J. H. Chen, H. J. Chiu, T. J. Kao, H. Y. Tsai, and J. R. Chen. 2017. Leak and explosion from an underground pipeline in Kaohsiung, Taiwan. Loss Prevention Bulletin 257:13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.