133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Heterogeneous Detonation Wave Interaction with Porous Medium

& ORCID Icon
Pages 1434-1449 | Received 26 Apr 2022, Accepted 19 Nov 2022, Published online: 21 Feb 2023

References

  • Bazyn, T., H. Krier, and N. Glumac. 2006. Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves. Combust. Flame 145 (4):703–13. doi:10.1016/j.combustflame.2005.12.017.
  • Bedarev, I. A. 2019. Micro-level modeling of the detonation wave attenuation by inert particles. Therm. Sci 23 (Suppl. 2):439–45. doi:10.2298/TSCI19S2439B.
  • Bivol, G. Y., S. V. Golovastov, and V. V. Golub. 2016. Attenuation and recovery of detonation wave after passing through acoustically absorbing section in hydrogen-air mixture at atmospheric pressure. J. Loss Prev. Process Ind. 43:311–14. doi:10.1016/j.jlp.2016.05.032.
  • Bu, Y., C. Li, P. Amyotte, W. Yuan, C. Yuan, and G. Li. 2020. Moderation of Al dust explosions by micro- and nano-sized Al2O3 powder. J. Hazard. Mater. 381:120968. doi:10.1016/j.jhazmat.2019.120968.
  • Evans, M. W., F. I. Given, and W. E. Richeson. 1955. Effects of attenuating materials on detonation induction distances in gases. J. Appl. Phys. 26 (9):1111–13. doi:10.1063/1.1722162.
  • Fedorov, A. V. 1992. Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen. Combust. Explos. Shock Waves 28 (3):277–86. doi:10.1007/BF00749644.
  • Fedorov, A. V., and T. A. Khmel. 2005. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen. Combust. Explos. Shock Waves 41 (4):435–48. doi:10.1007/s10573-005-0054-7.
  • Fedorov, A. V., T. A. Khmel, and V. M. Fomin. 1999. Non-equilibrium model of steady detonations in aluminum particles - oxygen suspensions. Shock. Waves 9:313–18. doi:10.1007/s001930050191.
  • Fedorov, A. V., and Y. V. Kratova. 2013. Calculation of detonation wave propagation in a gas suspension of aluminum and inert particles. Combust. Explos. Shock Waves 49 (3):335–47. doi:10.1134/S0010508213030106.
  • Fedorov, A. V., and D. A. Tropin. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Explos. Shock Waves 47 (4):464–72. doi:10.1134/S0010508211040101.
  • Fedorov, A. V., D. A. Tropin, and I. A. Bedarev. 2010. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust. Explos. Shock Waves 46 (3):332–43. doi:10.1007/s10573-010-0046-0.
  • Frolov, S. M., and B. E. Gelfand. 1992. Problem of detonation suppression by means of blankets and foams. Combust. Explos. Shock Waves 27 (6):756–63. doi:10.1007/BF00814523.
  • Golovastov, S. V., G. Y. Bivol, and D. Alexandrova. 2019. Evolution of detonation wave and parameters of its attenuation when passing along a porous coating. Exp. Therm. Fluid Sci. 100:124–34. doi:10.1016/j.expthermflusci.2018.08.030.
  • Gottiparthi, K. C., and S. Menon, 2011. Study of Deflagration-to-Detonation Transition in Gas-Particle Mixtures 1–13.
  • Ju, Y., and C. K. Law. 2002. Propagation and quenching of detonation waves in particle laden mixtures. Combust. Flame 129 (4):356–64. doi:10.1016/S0010-2180(02)00342-5.
  • Khmel, T. A. 2019. Modeling of cellular detonation in gas suspensions of submicron and nanosized aluminum particles. Combust. Explos. Shock Waves 55 (5):580–88. doi:10.1063/1.5065140.
  • Khmel, T. A., and S. A. Lavruk. 2021. Detonation flows in aluminium particle gas suspensions, inhomogeneous in concentrations. J. Loss Prev. Process Ind. 72:104522. doi:10.1016/j.jlp.2021.104522.
  • Kratova, Y. V., and A. V. Fedorov. 2014. Interaction of a heterogeneous detonation wave propagating in a cellular regime with a cloud of inert particles. Combust. Explos. Shock Waves 50 (2):183–91. doi:10.1134/S0010508214020099.
  • Kratova, Y. V., T. A. Khmel, and A. V. Fedorov. 2016. Axisymmetric expanding heterogeneous detonation in gas suspensions of aluminum particles. Combust. Explos. Shock Waves 52 (1):74–84. doi:10.1134/S001050821601010X.
  • Lavruk, S. A. 2019. Investigation of detonation suppression in aluminum suspensions of micro- and nanoparticles by inert particle clouds. AIP Conf. Proc. 2125:1–6. doi:10.1063/1.5117464.
  • Lavruk, S. A., and D. A. Tropin, 2020. Mathematical model of the interaction of a heterogeneous detonation wave with a suspension of water droplets. HIGH-ENERGY Process. Condens. MATTER (HEPCM 2020) Proc. XXVII Conf. High-Energy Process. Condens. Matter, Dedic. to 90th Anniv. birth RI Soloukhin 2288, 030021. 10.1063/5.0028287
  • Lavruk, S. A., and D. A. Tropin. 2021. Critical conditions of heterogeneous detonation propagation during interaction with water cloud droplets. AIP Conf. Proc. 2351:4–7. doi:10.1063/5.0052348.
  • Nigmatulin, R. I. 1990. Dynamics of multiphase media. Parts 1 & 2, vol. 507. New York, United States: Hemisphere publ Corp. ISBN: 9780891163282.
  • Papalexandris, M. V. 2005. Influence of inert particles on the propagation of multidimensional detonation waves. Combust. Flame 141 (3):216–28. doi:10.1016/j.combustflame.2004.12.017.
  • Pinaev, A. V., A. A. Vasilev, and P. A. Pinaev. 2015. Suppression of gas detonation by a dust cloud at reduced mixture pressures. Shock. Waves 25:267–75. doi:10.1007/s00193-014-0543-2.
  • Radulescu, M. I., and B. M. N. Maxwell. 2011. The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid. Mech 667:96–134. doi:10.1017/S0022112010004386.
  • Shafiee, H., and M. H. Djavareshkian. 2014. CFD simulation of particles effects on characteristics of detonation. Int. J. Comput. Theory Eng 6 (6):466–71. doi:10.7763/ijcte.2014.v6.911.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (Review). Combust. Explos. Shock Waves 51 (2):173–96. doi:10.1134/S0010508215020045.
  • Tahsini, A. M. 2016. Detonation wave attenuation in dust-free and dusty air. J. Loss Prev. Process Ind. 39:24–29. doi:10.1016/j.jlp.2015.11.006.
  • Taveau, J., S. Hochgreb, S. Lemkowitz, and D. Roekaerts. 2018. Explosion hazards of aluminum finishing operations. J. Loss Prev. Process Ind. 51:84–93. doi:10.1016/j.jlp.2017.11.011.
  • Tropin, D. A., and I. A. Bedarev. 2021a. Problems of detonation wave suppression in Hydrogen-Air mixtures by clouds of inert particles in one- and two-dimensional formulation. Combust. Sci. Technol. 193 (2):197–210. doi:10.1080/00102202.2020.1763323.
  • Tropin, D. A., and I. A. Bedarev. 2021b. Physical and mathematical modeling of interaction of detonation waves with inert gas plugs. J. Loss Prev. Process Ind. 72:72. doi:10.1016/j.jlp.2021.104595.
  • Tropin, D. A., and A. V. Fedorov. 2019. Effect of inert micro- and nanoparticles on the parameters of detonation waves in Silane/Hydrogen–Air mixtures. Combust. Explos. Shock Waves 55 (2):230–36. doi:10.1134/S0010508219020126.
  • Tropin, D. A., and S. A. Lavruk. 2022. Physicomathematical modeling of attenuation of homogeneous and heterogeneous detonation waves by clouds of water droplets. Combust. Explos. Shock Waves 58 (3):80–90. doi:10.15372/fgv20220308.
  • Vasilev, A. A. 1994. Near-limiting detonation in channels with porous walls. Combust. Explos. Shock Waves 30 (1):101–06. doi:10.1007/BF00787892.
  • Watanabe, H., A. Matsuo, A. Chinnayya, K. Matsuoka, A. Kawasaki, and J. Kasahara. 2019. “Numerical investigation on characteristic lengths for gaseous detonation with dilute water spray.” AIAA Propuls. Energy Forum Expo: 2019. doi:10.2514/6.2019-4132.
  • Watanabe, H., A. Matsuo, A. Chinnayya, K. Matsuoka, A. Kawasaki, and J. Kasahara. 2020. Numerical analysis of the mean structure of gaseous detonation with dilute water spray. J. Fluid. Mech 887:887. doi:10.1017/jfm.2019.1018.
  • Wolanski, P., J. C. Liu, C. W. Kauffman, J. A. Nicholls, and M. Sichel. 1988. The effect of Inert particles in Methane-Air detonation. Arch. Combastions 8:15–32.
  • Wolanski, M., and P. Wolanski. 1987. Gaseus detonation processes in presence of inert particles. Arch. Combust 7:353–70.
  • Xu, Y., M. Zhao, and H. Zhang. 2021. Extinction of incident hydrogen/air detonation in fine water sprays. Phys. Fluids 33 (11):116109. doi:10.1063/5.0071405.
  • Zhang, S., M. Bi, H. Jiang, and W. Gao. 2021. Suppression effect of inert gases on aluminum dust explosion. Powder. Technol 388:90–99. doi:10.1016/j.powtec.2021.04.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.