835
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Laser Ignition of Two Low-Vulnerability RDX-Based Gun Propellants: Influence of the Atmosphere on Ignition and Combustion Properties

, ORCID Icon, &
Pages 1450-1460 | Received 27 Apr 2022, Accepted 17 Jul 2022, Published online: 27 Feb 2023

References

  • Aduev, B. P., D. R. Nurmukhametov, I. Y. Liskov, A. V. Tupitsyn, and G. M. Belokurov. 2020. Laser pulse initiation of RDX-Al and PETN-Al composites explosion. Combust. Flame 216:468. doi:10.1016/j.combustflame.2019.10.037.
  • Ahmad, S., and M. Cartwright. 2014. Review of Laser Initiation. Laser ignition of energetic materials. 17–33. Chichester: John Wiley & Sons, doi:10.1002/9781118683521.ch2.
  • Beckstead, W. B., K. Puduppakkam, P. Thakre, and V. Yang. 2007. Modeling of combustion and ignition of solid-propellant ingredients. Prog. Energy Combust. Sci. 33 (6):497. doi:10.1016/j.pecs.2007.02.003.
  • Brill, T. B., H. Arisawa, P. J. Brush, P. E. Gongwer, and G. K. Williams. 1995. Surface chemistry of burning explosives and propellants. J Phys Chem 99 (5):1384. doi:10.1021/j100005a005.
  • Brill, T. B., and P. E. Gongwer. 1997. Thermal decomposition of energetic materials 69. analysis of the kinetics of nitrocellulose at 50 °C-500 °C. Propellants Explos. Pyrotech 22 (1):38. doi:10.1002/prep.19970220109.
  • Chin, A., D. S. Ellison, S. K. Poehlein, and M. K. Ahn. 2007. Investigation of the decomposition mechanism and thermal stability of nitrocellulose/nitroglycerine based propellants by electron spin resonance. Propellants Explos. Pyrotech 32 (2):117. doi:10.1002/prep.200700013.
  • Courty, L., P. Gillard, J. Ehrhardt, and B. Baschung. 2021. Experimental determination of ignition and combustion characteristics of insensitive gun propellants based on RDX and nitrocellulose. Combust. Flame 229:229. doi:10.1016/j.combustflame.2021.111402.
  • Ehrhardt, J. 2020. Allumage laser de poudres propulsives à vulnérabilité réduite : influence du taux de nitrocellulose sur les conditions de pyrolyse et d’inflammation, PhD Thesis, Université d’Orléans.
  • Ehrhardt, J., L. Courty, P. Gillard, and B. Baschung. 2020. Experimental study of pyrolysis and laser ignition of low-vulnerability propellants based on RDX. Molecules, MDPI 25 (10):2276. doi:10.3390/molecules25102276.
  • Fang, X., M. Stone, and C. Stennett. 2020. Pulsed laser irradiation of a nanoparticles sensitised RDX crystal. Combust. Flame 214:387. doi:10.1016/j.combustflame.2020.01.009.
  • Gillard, P., L. Courty, S. De Persis, J. F. Lagrange, C. Boulnois, and I. Gökalp. 2018. Combustion properties of a low-vulnerability propellant: An experimental and theoretical study using laser ignition. J. Energetic Mater 36 (3):362. doi:10.1080/07370652.2018.1439126.
  • Gillard, P., and F. Opdebeck. 2007. Laser diode ignition of the B/KNO3 pyrotechnic mixture: An experimental study. Combust. Sci. & Tech 179 (8):1667. doi:10.1080/00102200701259833.
  • Hiyoshi, R. I., and T. B. Brill. 2002. Thermal decomposition of energetic materials 83. comparison of the pyrolysis of energetic materials in air versus argon. Propellants Explos. Pyrotech 27 (1):23. doi:10.1002/1521-4087(200203)27:1<23:AID-PREP23>3.0.CO;2-B.
  • Katoh, K., L. Le, M. Kumasaki, Y. Wada, M. Arai, and M. Tamura. 2005. Study on the spontaneous ignition mechanism of nitric esters (I). Thermochim Acta 431 (1–2):161. doi:10.1016/j.tca.2005.01.067.
  • Khichar, M. 2021. Thermal decomposition and combustion modeling of RDX monopropellant and RDX-TAGzT pseudo-propellant. The Pennsylvania State University. PhD dissertation.
  • Kuo, K. K. 2005. Principles of combustion, 623–692. Hoboken: John Wiley & Sons. Appendix A.
  • Kuo, K. K., J. U. Kim, B. L. Fetherolf, and T. Torikai. 1993. Preignition dynamics of RDX-based energetic materials under CO2 laser heating. Combust. Flame 95 (4):351. doi:10.1016/0010-2180(93)90003-L.
  • Liau, Y. C., E. S. Kim, and V. Yang. 2001. A comprehensive analysis of laser-induced ignition of RDX monopropellant. Combust. Flame 126 (3):1680. doi:10.1016/S0010-2180(01)00281-4.
  • Melius, C. F. 1990. Thermochemical modeling, II: Application to ignition and combustion of energetic materials. In S. N. Bulusu Chemistry and physics of energetic materials. Chemistry and physics of energetic materials, Vol. 309, 51–78. Springer: Dordrecht. doi:10.1007/978-94-009-2035-4_4.
  • Miller, M. S., and W. R. Anderson. 2004. Burning-rate predictor for multi-ingredient propellants: Nitrate-ester propellants. J. Propuls. Power 20 (3):440–54. doi:10.2514/1.10386.
  • Patidar, L., and S. T. Thynell. 2017. Quantum mechanics investigation of initial reaction pathways and early ring-opening reactions in thermal decomposition of liquid-phase RDX. Combust. Flame 178:7. doi:10.1016/j.combustflame.2016.12.024.
  • Prasad, K., R. A. Yetter, and M. D. Smooke. 1997. An eigenvalue method for computing the burning rates of RDX propellants. Combust. Sci. Technol. 124 (1–6):35. doi:10.1080/00102209708935640.
  • Shi, X., Y. Jia, L. Chen, L. Tian, J. Shen, and C. Pei. 2020. Tuning the laser ignition properties of nitrocellulose-nitroglycerine-hexogen propellants via incorporation of carbon nanotubes. Cent. Eur. J. Energ. Mater 18 (3):385. doi:10.22211/cejem/142604.
  • Song, Q., W. Cao, X. Wei, J. Liu, J. Yuan, X. Li, X. Guo, and D. Gao. 2021. Laser ignition and combustion of micro- and nano-sized boron under different atmospheres and pressures. Combust. Flame 230:111420. doi:10.1016/j.combustflame.2021.111420.
  • Trache, D., and A. F. Tarchoun. 2018. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: A state-of-the-art review. J. Mater. Sci 53 (1):100. doi:10.1007/s10853-017-1474-y.
  • Uhlenhake, K. E., D. Collard, M. Gomez, M. Ornek, and S. F. Son 2022. Laser ignition of solid propellants using energetic nAl-PVDF optical sensitizers. AIAA 2022-1744 AIAA SCITECH 2022 Forum.
  • Yetter, R. A., F. L. Dryer, M. T. Allen, and J. L. Gatto. 1995. Development of gas-phase reaction mechanism for nitramine combustion. J. Propuls. Power 11 (4):683. doi:10.2514/3.23894.