308
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study of Turbulent Swirling Diffusion Flame Under Lean and Rich Conditions Using Turbulence Realizable k-epsilon Model

, , ORCID Icon, & ORCID Icon
Pages 1461-1482 | Received 15 Jun 2022, Accepted 08 Sep 2022, Published online: 26 Feb 2023

References

  • Akinyemi, O. S., and L. Jiang. 2019. Development and combustion characterization of a novel twin-fluid fuel injector in a swirl-stabilized gas turbine burner operating on straight vegetable oil. Exp. Therm. Fluid Sci. 102:279–90. doi:10.1016/j.expthermflusci.2018.11.014.
  • Bouras, F., M. H. Attia, F. Khaldi, and M. Si-Ameur. 2017. Control of methane flame properties by hydrogen fuel addition: Application to power plant combustion chamber. Int. J. Hydrogen EnergyInt. J. Hydrogen Energy 42 (13):8932–39. doi:10.1016/j.ijhydene.2016.11.146.
  • Boushaki, T., N. Merlo, C. Chauveau, and I. Gökalp 2017. Study of pollutant emissions and dynamics of non-premixed turbulent oxygen enriched flames from a swirl burner. Proceedings of the Combustion Institute 36(3): 3959–68. doi:10.1016/j.proci.2016.06.046.
  • Chakchak, S., A. Hidouri, H. Zaidaoui, M. Chrigui, and T. Boushaki. 2021. Experimental and numerical study of swirling diffusion flame provided by a coaxial burner: Effect of inlet velocity ratio. Fluids 6 (4):4–159. doi:10.3390/fluids6040159.
  • Chakchak, S., H. Zaidaoui, A. Hidouri, G. Godard, and T. Boushaki. 2022. Oxygen enrichment effects on CH4-air turbulent flow characteristics in a coaxial swirl burner. Combustion Science and Technology 1–24. doi:10.1080/00102202.2021.2019237.
  • Chen, H., and V. C. Patel. 1988. Near-wall turbulence models for complex flows including separation. AIAA J. 26 (6):641–48. doi:10.2514/3.9948.
  • Degenève, A., R. Vicquelin, C. Mirat, B. Labegorre, P. Jourdaine, J. Caudal, and T. Schuller. 2019. Scaling relations for the length of coaxial oxy-flames with and without swirl. Proceedings of the Combustion Institute 37(4): 4563–70. doi:10.1016/j.proci.2018.06.032.
  • Fu, J., Y. Tang, J. Li, Y. Ma, W. Chen, and H. Li. 2016. Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner. Appl. Therm. Eng. 93:397–404. doi:10.1016/j.applthermaleng.2015.09.116.
  • Gheraissa, N., F. Bouras, F. Khaldi, A. Hidouri, F. FerhatRehouma, and A. Dogga. 2021. A comparative study of the combustion supplied by multi-fuels: Computational analysis. Energy. Rep. 7:3819–32. doi:10.1016/j.egyr.2021.06.073.
  • Gonca, G. 2015. Investigation of the influences of steam injection on the equilibrium combustion products and thermodynamic properties of bio fuels (biodiesels and alcohols). Fuel 144 (3):244–58. doi:10.1016/j.fuel.2014.12.032.
  • Hidouri, A., M. Chrigui, T. Boushaki, A. Sadiki, and J. Janicka. 2017. Large eddy simulation of two isothermal and reacting turbulent separated oxy-fuel jets. Fuel 192:108–20. doi:10.1016/j.fuel.2016.12.018.
  • Hidouri, A., N. Yahya, T. Boushaki, A. Sadiki, and J. C. Sautet. 2016. Numerical and experimental investigation of turbulent three separated jets. Appl. Therm. Eng. 104:153–61. doi:10.1016/j.applthermaleng.2016.05.021.
  • Jin, X., Y. Zhou, and S. Zheng. 2018. Numerical investigation of different effects of carbon dioxide properties and carbon monoxide oxidation on char particle combustion in actual and fictitious O2/CO2 environments. Fuel 217:59–65. doi:10.1016/j.fuel.2017.12.040.
  • Kader, B. A. 1981. Temperature and concentration profiles in fully turbulent boundary layers. International journal of heat and mass transfer 24 (9):1541–44. doi:10.1016/0017-9310(81)90220-9.
  • Kanga, M. S., H. J. Jeong, M. M. Farid, and J. Hwang. 2017. Effect of staged combustion on low NOx emission from an industrial-scale fuel oil combustor in South Korea. Fuel 210 (12):282–89. doi:10.1016/j.fuel.2017.08.065.
  • Kim, T. Y., S. Choi, H. K. Kim, I. Jeung, J. Koo, and O. C. Kwon. 2016. Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor. Fuel 184:28–35. doi:10.1016/j.fuel.2016.07.001.
  • Liu, X., M. B. Gerdroodbary, M. Sheikholeslami, R. Moradi, A. Shafee, and Z. Li. 2020. Effect of strut angle on performance of hydrogen multi-jets inside the cavity at combustion chamber. Int. J. Hydrogen Energy 45 (55):31179–87. doi:10.1016/j.ijhydene.2020.08.124.
  • Magnussen, B. F., and B. H. Hjertager. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. 16th Symposium (international) on combustion 16(1): 719–29.
  • Mansouri, Z., M. Aouissi, and T. Boushaki. 2016. Detached eddy simulation of high turbulent swirling reacting flow in a premixed model burner. Comb. Sci. Tech. 188 (11–12):1777–98. doi:10.1080/00102202.2016.1211888.
  • Mansouri, Z., and T. Boushaki. 2018. Experimental and numerical investigation of turbulent isothermal and reacting flows in a non-premixed swirl burner. Int. J. Heat. Fluid. Flow. 72:200–13. doi:10.1016/j.ijheatfluidflow.2018.06.007.
  • Merlo, N., T. Boushaki, C. Chauveau, S. de Persis, L. Pillier, B. Sarh, and I. Go Kalp. 2013. Experimental study of oxygen enrichment effects on turbulent non-premixed swirling flames. Energy & Fuels 27 (10):6191–97. doi:10.1021/ef400843c.
  • Moussa, O., and Z. Driss. 2017. Numerical investigation of the turbulence models effect on the combustion characteristics in a non-premixed turbulent flame methane-air. Am. J. Energy Res 5:85–93.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion, 164-169. Pennsylvania, USA: RT Edwards, Inc.
  • Reis, L. C. B. S., J. A. Carvalho Jr, M. A. R. Nascimento, L. O. Rodrigues, F. L. G. Dias, and P. M. Sobrinho. 2014. Numerical modeling of flow through an industrial burner orifice. Appl. Therm. Eng. 67 (1–2):201–13. doi:10.1016/j.applthermaleng.2014.02.036.
  • Riahi, Z., H. Bounaouara, I. Hraiech, M. A. Mergheni, J. C. Sautet, and S. B. Nasrallah. 2017. Combustion with mixed enrichment of oxygen and hydrogen in lean regime. Int. J. Hydrogen Energy 42 (13):8870–80. doi:10.1016/j.ijhydene.2016.06.232.
  • Riahi, Z., M. A. Mergheni, J. C. Sautet, and S. B. Nasrallah. 2012. Numerical study of turbulent normal diffusion flame ch4-air stabilized by coaxial burner. Therm. Sci. 1:1–20. doi:10.2298/TSCI110609042R.
  • Ruan, C., F. Chen, W. Cai, Y. Qian, L. Yu, and X. Lu. 2019. Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review. Aerospace Sci. Tech. 84:585–603. doi:10.1016/j.ast.2018.10.002.
  • Salentey, L. 2002.Experimental Study of the Behavior of Burners with Separated Jets Application to Combustion of Natural Gas/Oxygen pure (in French), Ph. D. thesis, Faculty of Science and Technology of the University of Rouen, France
  • Schluckner, C., C. Gaber, M. Landfahrer, M. Demuth, and C. Hochenauer. 2020. Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics. Fuel 264:116841. doi:10.1016/j.fuel.2019.116841.
  • Shih, T. H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Comput. fluid. 24 (3):227–38. doi:10.1016/0045-7930(94)00032-T.
  • Sui, R., J. Mantzaras, and R. Bombach. 2019. H2 and CO heterogeneous kinetic coupling during combustion of H2/CO/O2/N2 mixtures over rhodium. Combust. Flame. 202:292–302. doi:10.1016/j.combustflame.2019.01.021.
  • Sun, H., P. Yan, L. Tian, G. Ren, Y. Xu, and Z. Sheng. 2021. Effects of hydrogen multijet and flow rate assignment on the combustion flow characteristics in a jet-Stabilized combustor. ACS. Omega 6 (20):12952–64. doi:10.1021/acsomega.0c05007.
  • Wang, P. 2016. The model constant a of the eddy dissipation model. Prog. Comput. Fluid Dynamics. Int. J. 16 (2):118. doi:10.1504/PCFD.2016.075154.
  • Wu, E., C. Okafor, A. Kunkuma, K. D. Somarathne, R. Ratthananb, A. Hayakawa, T. Kudo, O. Kurata, N. Iki, and T. Tsujimura. 2020. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combust. Flame. 211:406–16. doi:10.1016/j.combustflame.2019.10.012.
  • Yang, X., Z. He, P. Qiu, S. Dong, and H. Tan. 2019. Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor. Energy 170:1082–97. doi:10.1016/j.energy.2018.12.189.
  • Zeng, Q., D. Zheng, and Y. Yuan. 2020. Counter-rotating dual-stage swirling combustion characteristics of hydrogen and carbon monoxide at constant fuel flow rate. Int. J. Hydrogen EnergyInt. J. Hydrogen Energy 45 (7):4979–90. doi:10.1016/j.ijhydene.2019.12.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.