533
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Surface Density Function and Its Evolution in Homogeneous and Inhomogeneous Mixture n-Heptane MILD Combustion

ORCID Icon & ORCID Icon
Pages 1483-1508 | Received 19 Jul 2022, Accepted 01 Dec 2022, Published online: 12 Mar 2023

References

  • Ahmed, U., A. L. Pillai, N. Chakraborty, and R. Kurose. 2020. Surface density function evolution and the influence of strain rates during turbulent boundary layer flashback of hydrogen-rich premixed combustion. Physics of Fluids 32 (5):055112. doi:10.1063/5.0004850.
  • Aminian, J., C. Galletti, S. Shahhosseini, and L. Tognotti. 2011. Key modeling issues in prediction of minor species in diluted-preheated combustion conditions. Appl. Therm. Eng. 31 (16):3287–300. doi:10.1016/j.applthermaleng.2011.06.007.
  • Awad, H. S. A. M., K. Abo-Amsha, U. Ahmed, and N. Chakraborty. 2021. Comparison of the reactive scalar gradient evolution between homogeneous MILD combustion and premixed turbulent flames. Energies 14 (22):7677. doi:10.3390/en14227677.
  • Batchelor, G. K., and A. A. Townsend (1948). Decay of turbulence in the final period. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 194 (1039), 527–43.
  • Bilger, R. W. 1989. The structure of turbulent nonpremixed flames. Symposium (International) on Combustion 22 (1):475–88. doi:10.1016/S0082-0784(89)80054-2.
  • Candel, S. M., and T. J. Poinsot. 1990. Flame stretch and the balance equation for the flame area. Combust Sci Technol. 70 (1–3):1–15. doi:10.1080/00102209008951608.
  • Cant, R. S. (2012). CUED/A-THERMO/TR67 (Tech. Rep). Cambridge University Engineering Department.
  • Cavaliere, A., and M. de Joannon. 2004. Mild combustion. Prog. Energy Combust. Sci. 30 (4):329–66. doi:10.1016/j.pecs.2004.02.003.
  • Chakraborty, N., and R. S. Cant. 2005. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Physics of Fluids 17 (6):065108. doi:10.1063/1.1923047.
  • Chen, J. H., E. R. Hawkes, R. Sankaran, S. D. Mason, and H. G. Im. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics. Combust. Flame 145 (1–2):128–44. doi:10.1016/j.combustflame.2005.09.017.
  • Christo, F. C., and B. B. Dally. 2005. Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142 (1–2):117–29. doi:10.1016/j.combustflame.2005.03.002.
  • Dally, B. B., A. N. Karpetis, and R. S. Barlow (2002). Structure of turbulent non- premixed jet flames in a diluted hot coflow. Proceedings of the Combustion Institute 29 (1): 1147–54.
  • Dally, B. B., E. Riesmeier, and N. Peters. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame 137 (4):418–31. doi:10.1016/j.combustflame.2004.02.011.
  • Desai, S., R. Sankaran, and H. G. Im. 2020. Auto-ignitive deflagration speed of methane (CH4) blended dimethyl-ether (DME)/air mixtures at stratified conditions. Combust. Flame 211:377–91. doi:10.1016/j.combustflame.2019.10.001.
  • Doan, N., and N. Swaminathan. 2019a. Analysis of markers for combustion mode and heat release in MILD combustion using DNS data. Combust Sci Technol. 191 (5–6):1059–78. doi:10.1080/00102202.2019.1610746.
  • Doan, N., and N. Swaminathan. 2019b. Autoignition and flame propagation in non- premixed MILD combustion. Combust. Flame 201:234–43. doi:10.1016/j.combustflame.2018.12.025.
  • Doan, N., N. Swaminathan, and Y. Minamoto. 2018. DNS of MILD combustion with mixture fraction variations. Combust. Flame 189:173–89. doi:10.1016/j.combustflame.2017.10.030.
  • Dopazo, C., L. Cifuentes, J. Martin, and C. Jimenez. 2015. Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 162 (5):1729–36. doi:10.1016/j.combustflame.2014.11.034.
  • Echekki, T., and J. H. Chen. 1996. Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106 (1–2):184–202. doi:10.1016/0010-2180(96)00011-9.
  • Echekki, T., and J. H. Chen. 1999. Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118 (1–2):308–11. doi:10.1016/S0010-2180(99)00006-1.
  • Eswaran, V., and S. B. Pope. 1988. Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31 (3):506–20. doi:10.1063/1.866832.
  • Goodwin, D. G., H. K. Moffat, I. Schoegl, R. L. Speth, and B. W. Weber (2022). Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org. ( Version 2.6.0)
  • Griffiths, R. A. C., J. H. Chen, H. Kolla, R. S. Cant, and W. Kollmann (2015). Three-dimensional topology of turbulent premixed flame interaction. Proceedings of the Combustion Institute 35 (2): 1341–48.
  • Klein, M., D. Alwazzan, and N. Chakraborty. 2018. A direct numerical simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-Part 1: Scalar gradient and strain rate statistics. Comput Fluids 173:178–88. doi:10.1016/j.compfluid.2018.03.010.
  • Li, P., J. Mi, B. B. Dally, F. Wang, L. Wang, Z. Liu, S. Chen, and C. Zheng. 2011. Progress and recent trend in MILD combustion. Sci. China Technol. Sci. 54 (2):255–69. doi:10.1007/s11431-010-4257-0.
  • Liu, S., J. C. Hewson, J. H. Chen, and H. Pitsch. 2004. Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame 137 (3):320–39. doi:10.1016/j.combustflame.2004.01.011.
  • Malkeson, S. P., and N. Chakraborty. 2010. Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study. Combust Sci Technol. 182 (11–12):1841–83. doi:10.1080/00102202.2010.500993.
  • Masri, A. R. (2021). Challenges for turbulent combustion. Proceedings of the Combustion Institute 38 (1): 121–55.
  • Minamoto, Y., T. D. Dunstan, N. Swaminathan, and R. S. Cant (2013). DNS of EGR-type turbulent flame in MILD condition. Proceedings of the Combustion Institute 34 (2): 3231–38.
  • Minamoto, Y., and N. Swaminathan. 2014. Scalar gradient behaviour in MILD combustion. Combust. Flame 161 (4):1063–75. doi:10.1016/j.combustflame.2013.10.005.
  • Minamoto, Y., and N. Swaminathan (2015). Subgrid scale modelling for MILD combustion. Proceedings of the Combustion Institute 35 (3): 3529–36.
  • Minamoto, Y., N. Swaminathan, R. S. Cant, and T. Leung. 2014a. Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161 (11):2801–14. doi:10.1016/j.combustflame.2014.04.018.
  • Minamoto, Y., N. Swaminathan, R. S. Cant, and T. Leung. 2014b. Reaction zones and their structure in MILD combustion. Combust Sci Technol. 186 (8):1075–96. doi:10.1080/00102202.2014.902814.
  • Oldenhof, E., M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts. 2011. Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame 158 (8):1553–63. doi:10.1016/j.combustflame.2010.12.018.
  • Özdemir, İ. B., and N. Peters. 2001. Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids 30 (6):683–95. doi:10.1007/s003480000248.
  • Perpignan, A. A. V., A. Gangoli Rao, and D. J. E. M. Roekaerts. 2018. Flameless combustion and its potential towards gas turbines. Prog. Energy Combust. Sci. 69:28–62. doi:10.1016/j.pecs.2018.06.002.
  • Peters, N. 2000. Turbulent combustion. Cambridge, UK: Cambridge University Press.
  • Plessing, T., N. Peters, and J. G. Wünning. 1998. Laser-optical investigation of highly preheated combustion with strong exhaust gas recirculation. Symposium (International) on Combustion 27 (2):3197–204. doi:10.1016/S0082-0784(98)80183-5.
  • Pope, S. B. 1988. The evolution of surfaces in turbulence. Int J Eng Sci 26 (5):445–69. doi:10.1016/0020-7225(88)90004-3.
  • Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence (Tech. Rep. No. NASA-TM-81315).
  • Sankaran, R., E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law (2007). Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proceedings of the Combustion Institute 31 (1): 1291–98.
  • Swaminathan, N. 2019. “Physical Insights on MILD Combustion from DNS.” Front. Mech. Eng. 5. doi:10.3389/fmech.2019.00059.
  • Trivedi, S., G. V. Nivarti, and R. S. Cant (2019). Flame self-interactions with increasing turbulence intensity. Proceedings of the Combustion Institute 37 (2): 2443–49.
  • Wünning, J. A., and J. G. Wünning. 1997. Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23 (1):81–94. doi:10.1016/S0360-1285(97)00006-3.
  • Ye, J., P. R. Medwell, M. J. Evans, and B. B. Dally. 2017. Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow. Combust. Flame 183:330–42. doi:10.1016/j.combustflame.2017.05.027.