134
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical Prediction of Cables Fire Behaviour Using Non-Metallic Components in Cone Calorimeter

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1509-1525 | Received 22 Jul 2022, Accepted 12 Feb 2023, Published online: 23 Feb 2023

References

  • Alonso, A., D. Lázaro, M. Lázaro, and D. Alvear. 2022. Self-heating evaluation on thermal analysis of polymethyl methacrylate (PMMA) and linear low-density polyethylene (LLDPE). 147 (18):10067–81. J Therm Anal Calorim. doi:10.1007/s10973-022-11364-x.
  • Alonso, A., M. Lázaro, P. Lázaro, D. Lázaro, and D. Alvear. 2019. LLDPE kinetic properties estimation combining thermogravimetry and differential scanning calorimetry as optimization targets. J Therm Anal Calorim 138 (4):2703–13. doi:10.1007/s10973.
  • Astm, E. 2013. Standard test methods for measurement of synthetic polymer material flammability using a Fire Propagation Apparatus (FPA). Annu. Book Stand. doi:10.1520/E2058-13.
  • Bal, N., and G. Rein. 2015. On the effect of inverse modelling and compensation effects in computational pyrolysis for fire scenarios. Fire Saf. J. 72:68–76. doi:10.1016/j.firesaf.2015.02.012.
  • Beji, T., and B. Merci. 2018. Numerical simulations of a full‐scale cable tray fire using small‐scale test data. Fire Mater 43 (5):486–96. doi:10.1002/fam.2687.
  • Duan, Q. Y., V. K. Gupta, and S. Sorooshian. 1993. Shuffled complex evolution approach for effective and efficient global minimization. J Optimiz Theory App 76 (3):501–21. doi:10.1007/bf00939380.
  • Gallo, E., W. Stöcklein, P. Klack, and B. Schartel. 2016. Assessing the reaction to fire of cables by a new bench‐scale method. Fire Mater 41 (6):768–78. doi:10.1002/fam.2417.
  • Ghorbani, Z., R. Webster, M. Lázaro, and A. Trouvé. 2013. Limitations in the predictive capability of pyrolysis models based on a calibrated semi-empirical approach. Fire Saf. J. 61:274–88. doi:10.1016/j.firesaf.2013.09.007.
  • Girardin, B., G. Fontaine, S. Duquesne, and S. Bourbigot. 2016. Fire tests at reduced scale as powerful tool to fasten the development of flame-retarded material: Application to cables. J Fire Sci 34 (3):240–64. doi:10.1177/0734904116642618.
  • Girardin, B., G. Fontaine, S. Duquesne, M. Försth, and S. Bourbigot. 2015. Characterization of thermo-physical properties of EVA/ATH: Application to gasification experiments and pyrolysis modeling. Materials 8 (11):7837–63. doi:10.3390/ma8115428.
  • Grayson, S., P. Van Hees, U. Vercellotti, H. Breulet, and A. Green. 2000. Fire performance of electrical cables – new test methods and measurement techniques. Final report of European Commission. SMT Programme Sponsored Research Project SMT4-CT96-2059. SMT Programme Sponsored Research Project SMT4-CT96-2059. Interscience Communications London 410. ISBN 0-9532312-5-9.
  • Hehnen, T., L. Arnold, and S. La Mendola. 2020. Numerical fire spread simulation based on material Pyrolysis—An application to the CHRISTIFIRE phase 1 horizontal cable tray tests. Fire 3 (3):33. doi:10.3390/fire3030033.
  • Hehnen, T., L. Arnold, P. Van Hees, and S. La Mendola 2018. Simulation of fire propagation in cable tray installations for particle accelerator facility tunnels. Proc 8th International Symposium on Tunnel Safety and Security ISTSS March 14-16, 2018. Borås (Sweden).
  • Hopkins, D., and J. G. Quintiere. 1996. Material fire properties and predictions for thermoplastics. Fire Saf. J. 26 (3):241–68. doi:10.1016/S0379-7112(96)00033-1.
  • ISO. 2015. Reaction-to-fire tests — heat release, smoke production and mass loss rate — part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement).
  • Kempel, F., B. Schartel, G. T. Linteris, S. I. Stoliarov, R. E. Lyon, R. N. Walters, and A. Hofmann. 2012. Prediction of the mass loss rate of polymer materials: Impact of residue formation. Combust. Flame 159 (9):2974–84. doi:10.1016/j.combustflame.2012.03.012.
  • Lautenberger, C., and C. Fernandez-Pello. 2011. Optimization algorithms for material pyrolysis property estimation. Fire Saf Sci 10:751–64. doi:10.3801/IAFSS.FSS.10-751.
  • Lázaro, D., M. Lázaro, A. Alonso, P. Lázaro, and D. Alvear. 2019. Influence of the STA boundary conditions on thermal decomposition of thermoplastic polymers. J Therm Anal Calorim 138 (4):2457–68. doi:10.1007/s10973-019-08787-4.
  • Magalie, C., C. Anne-Sophie, S. Rodolphe, F. Laurent, G. Emmanuelle, and L. Christian. 2018. Fire behaviour of electrical cables in cone calorimeter: Influence of cables structure and layout. Fire Saf. J. 99:12–21. doi:10.1016/j.firesaf.2018.05.001.
  • Martinka, J., P. Rantuch, J. Sulová, and F. Martinka. 2019. Assessing the fire risk of electrical cables using a cone calorimeter. J Therm Anal Calorim 135 (6):3069–83. doi:10.1007/s10973-018-7556-5.
  • Marti, J., B. Schartel, and E. Oñate. 2022. Simulation of the burning and dripping cables in fire using the particle finite element method. J Fire Sci 40 (1):3–25. doi:10.1177/07349041211039752.
  • Matala, A., and S. Hostikka. 2011. Pyrolysis modelling of PVC cable materials. Fire Saf. Sci 10:917–30. doi:http://dx.doi.org/10.3801/iafss.fss.10-917.
  • Matlab. 2018. Version 9.4.0.813654 (R2018a). Natick, Massachusetts: The MathWorks Inc.
  • McGrattan, K., S. Hostikka, J. Floyd, R. McDermott, C. Weinschenk, and M. Vanella. 2022. Fire dynamics simulator technical reference guide volume 1: Mathematical model. National Institute of Standards and Technology-NIST Special Publication 1018 (1. doi:http://dx.doi.org/10.6028/NIST.SP.1018.
  • Meinier, R., R. Sonnier, P. Zavaleta, S. Suard, and L. Ferry. 2018. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 342:306–16. doi:10.1016/j.jhazmat.2017.08.027.
  • Murer, L., S. Chatenet, G. Fontaine, S. Bourbigot, and O. Authier. 2018. Influence of model assumptions on charring polymer decomposition in the cone calorimeter. J Fire Sci 36 (3):181–201. doi:10.1177/0734904118761641.
  • Rhodes, B. T., and J. G. Quintiere. 1996. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf. J. 26 (3):221–40. doi:10.1016/S0379-7112(96)00025-2.
  • UNE. 2016. Common test methods for cables under fire conditions - Heat release and smoke production measurement on cables during flame spread test - Test apparatus, procedures, results. Madrid (Spain): AENOR-Spanish Association for Standardisation and Certification.
  • UNE. 2021. Reaction to fire tests for building products - building products excluding floorings exposed to the thermal attack by a single burning item. Madrid (Spain): AENOR-Spanish Association for Standardisation and Certification.
  • Witkowski, A., B. Girardin, M. Försth, F. Hewitt, G. Fontaine, S. Duquesne, S. Bourbigot, and T. R. Hull. 2015. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials. Polym. Degrad. Stab. 113:208–17. doi:10.1016/j.polymdegradstab.2015.01.006.
  • Zhao, G., T. Beji, D. Zeinali, and B. Merci 2017. Numerical study on the influence of in-depth radiation in the pyrolysis of medium density fibreboard. In 15th International Conference Fire and Materials February 6-8 2017. San Francisco, California (USA); 863–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.