677
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probing PAH Formation from Heptane Pyrolysis in a Single-Pulse Shock Tube

, , , , &
Pages 1526-1542 | Received 26 Jul 2022, Accepted 16 Sep 2022, Published online: 07 Mar 2023

References

  • Appleby, W. G., W. H. Avery, and W. K. Meerbott. 1947. Kinetics and mechanism of the thermal decomposition of n-heptane. J. Am. Chem. Soc. 69 (10):2279–85. doi:10.1021/ja01202a012.
  • Aribike, D., and A. Susu. 1988. Mechanistic modeling of the pyrolysis of n-heptane. Thermochim Acta 127:259–73. doi:10.1016/0040-6031(88)87502-6.
  • Aribike, D. S., and A. A. Susu. 1988. Kinetics and mechanism of the thermal cracking of n-heptane. Thermochim Acta 127:247–58. doi:10.1016/0040-6031(88)87501-4.
  • Bajus, M., V. Veselý, P. A. Leclercq, and J. A. Rijks. 1979. Steam cracking of hydrocarbons. 1. Pyrolysis of heptane. Resour. Policy 18 (1):30–37. doi:10.1021/i360069a007.
  • Chakraborty, J. P., and D. Kunzru. 2009. High pressure pyrolysis of n-heptane. J Anal Appl Pyrolysis 1 (86):44–52. doi:10.1016/j.jaap.2009.04.001.
  • Comandini, A., T. Malewicki, and K. Brezinsky. 2012. Online and offline experimental techniques for polycyclic aromatic hydrocarbons recovery and measurement. Rev Sci Instrum 83 (3):034101. doi:10.1063/1.3692748.
  • Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. 1998. A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114 (1):149–77. doi:10.1016/S0010-2180(97)00282-4.
  • Davidson, D., M. Oehlschlaeger, and R. K. Hanson. 2007. Methyl concentration time-histories during iso-octane and n-heptane oxidation and pyrolysis. Proc Combust Inst 31:321–28. doi:10.1016/j.proci.2006.07.087.
  • Ferris, A. M., D. F. Davidson, and R. K. Hanson. 2018. A combined laser absorption and gas chromatography sampling diagnostic for speciation in a shock tube. Combust. Flame 195:40–49. doi:10.1016/j.combustflame.2018.04.032.
  • Garner, S., R. Sivaramakrishnan, and K. Brzezinski. 2009. The high-pressure pyrolysis of saturated and unsaturated C7 hydrocarbons. Proc Combust Inst 32:464–67. doi:10.1016/j.proci.2008.06.217.
  • Hamadi, A., L. Carneiro Piton, S. Abid, N. Chaumeix, and A. Comandini. 2022. Combined high-pressure experimental and kinetic modeling study of cyclopentene pyrolysis and its reactions with acetylene. In Proc. Combust, Inst doi:10.1016/j.proci.2022.07.023.
  • Hamadi, A., W. Sun, S. Abid, N. Chaumeix, and A. Comandini. 2022. An experimental and kinetic modeling study of benzene pyrolysis with C2−C3 unsaturated hydrocarbons. Combust. Flame 237:111858. doi:10.1016/j.combustflame.2021.111858.
  • Han, X., J. M. Mehta, and K. Brezinsky. 2019. Temperature approximations in chemical kinetics studies using single pulse shock tubes. Combust. Flame 209:1–12. doi:10.1016/j.combustflame.2019.07.022.
  • Held, T. J., A. J. Marchese, and F. L. Dryer. 1997. A semi-empirical reaction mechanism for n-heptane oxidation and pyrolysis. Combust. Sci. Technol. 123 (1–6):107–46. doi:10.1080/00102209708935624.
  • Hugoniot, P. H. 1887. Sur la Propagation du Mouvement dans les Corps et Spécialement dans les Gaz Parfaits (première partie) 57:3–97.
  • Hugoniot, P. H. 1889. Sur la Propagation du Mouvement dans les Corps et Spécialement dans les Gaz Parfaits (deuxième partie) 58:1–125.
  • Jin, H., L. Xing, J. Hao, J. Yang, Y. Zhang, C. Cao, Y. Pan, and A. Farooq. 2019. A chemical kinetic modeling study of indene pyrolysis. Combust. Flame 206:1–20. doi:10.1016/j.combustflame.2019.04.040.
  • Li, X., Z. Ma, E. Lv, Y. Dong, and X. Wang. 2021. Experimental and kinetic study of hydrocarbon fuel pyrolysis in a shock tube. Fuel 304:121521. doi:10.1016/j.fuel.2021.121521.
  • Manion, J. A., D. A. Sheen, and I. A. Awan. 2015. Evaluated kinetics of the reactions of H and CH3 with n-alkanes: Experiments with n-butane and a combustion model reaction network analysis. J Phys Chem A 119 (28):7637–58. doi:10.1021/acs.jpca.5b01004.
  • Mehta, J. M., W. Wang, and K. Brezinsky. 2022. Shock tube study of natural gas oxidation at propulsion relevant conditions. Proc Combust Inst. doi:10.1016/j.proci.2022.06.012.
  • Mertens, L. A., I. A. Awan, D. A. Sheen, and J. A. Manion. 2018. Evaluated site-specific rate constants for reaction of isobutane with H and CH3: Shock tube experiments combined with bayesian Model optimization. J Phys Chem A 122 (49):9518–41. doi:10.1021/acs.jpca.8b08781.
  • Miller, J. A., and S. J. Klippenstein. 2003. The recombination of propargyl radicals and other reactions on a C6H6 potential. J Phys Chem A 107 (39):7783–99. doi:10.1021/jp030375h.
  • Murata, M., and S. Saito. 1974. Prediction of initial product distribution from n-paraffin pyrolysis at higher temperatures by considering ethyl radical decomposition. J. Chem. Eng. Jpn 7 (5):389–91. doi:10.1252/jcej.7.389.
  • Murata, M., and S. Saito. 1975. A simulation model for high-conversion pyrolysis of normal paraffinic hydrocarbons. J. Chem. Eng. Jpn 8 (1):39–45. doi:10.1252/jcej.8.39.
  • Pant, K. K., and D. Kunzru. 1996. Pyrolysis of n-heptane: Kinetics and modeling. J Anal Appl Pyrolysis 36 (2):103–20. doi:10.1016/0165-2370(95)00925-6.
  • Pejpichestakul, W., E. Ranzi, M. Pelucchi, A. Frassoldati, A. Cuoci, A. Parente, and T. Faravelli. 2019. Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc Combust Inst 37 (1):1013–21. doi:10.1016/j.proci.2018.06.104.
  • Pilla, G., D. Davidson, and R. Hanson. 2011. Shock tube/laser absorption measurements of ethylene time-histories during ethylene and n-heptane pyrolysis. Proc Combust Inst 33:333–40. doi:10.1016/j.proci.2010.06.146.
  • Pyun, S., W. Ren, D. Davidson, and R. Hanson. 2013. Methane and ethylene time-history measurements in n-butane and n-heptane pyrolysis behind reflected shock waves. Fuel 108:557–64. doi:10.1016/j.fuel.2012.12.034.
  • Rankine, W. J. M. 1870. XV. On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond 160:277–88.
  • Shao, C., G. Kukkadapu, S. W. Wagnon, W. J. Pitz, and S. M. Sarathy. 2020. PAH formation from jet stirred reactor pyrolysis of gasoline surrogates. Combust. Flame 219:312–26. doi:10.1016/j.combustflame.2020.06.001.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2020. An experimental and kinetic modeling study of phenylacetylene decomposition and the reactions with acetylene/ethylene under shock tube pyrolysis conditions. Combust. Flame 220:257–71. doi:10.1016/j.combustflame.2020.06.044.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2021a. A comprehensive kinetic study on the speciation from propylene and propyne pyrolysis in a single-pulse shock tube. Combust. Flame 231:111485. doi:10.1016/j.combustflame.2021.111485.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2021b. Detailed experimental and kinetic modeling study of toluene/C2 pyrolysis in a single-pulse shock tube. Combust. Flame 226:129–42. doi:10.1016/j.combustflame.2020.11.044.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2021c. Probing PAH formation chemical kinetics from benzene and toluene pyrolysis in a single-pulse shock tube. Proc Combust Inst 38 (1):891–900. doi:10.1016/j.proci.2020.06.077.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2022. Influences of propylene/propyne addition on toluene pyrolysis in a single-pulse shock tube. Combust 236:111799. doi:10.1016/j.combustflame.2021.111799.
  • Sun, W., A. Hamadi, F. E. C. Ardila, S. Abid, N. Chaumeix, and A. Comandini. 2022. Insights into pyrolysis kinetics of xylene isomers behind reflected shock waves. Combust. Flame 244:112247. doi:10.1016/j.combustflame.2022.112247.
  • Tang, W., and K. Brezinsky. 2006. Chemical kinetic simulations behind reflected shock waves. Int. J. Chem. Kinet. 38 (2):75–97. doi:10.1002/kin.20134.
  • Wang, H., E. Dames, B. Sirjean, D. A. Sheen, R. Tango, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos, D. F. Davidson, R. K. Hanson, et al. 2010. High-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures 2(2): 19. JetSurF version 2.0.
  • Wang, K., S. M. Villano, and A. M. Dean. 2015. Reactions of allylic radicals that impact molecular weight growth kinetics. Phys. Chem. Chem. Phy 17 (9):6255–73. doi:10.1039/C4CP05308G.
  • Yasunaga, K., S. Etoh, H. Yamada, H. Oshita, and Y. Hidaka. 2018. Modeling and experimental study on pyrolysis of isooctane and n-heptane behind reflected shock waves. Chem. Lett. 47 (6):747–50. doi:10.1246/cl.180154.
  • Yasunaga, K., H. Yamada, H. Oshita, K. Hattori, Y. Hidaka, and H. Curran. 2017. Pyrolysis of n-pentane, n-hexane and n-heptane in a single pulse shock tube. Combust. Flame 185:335–45. doi:10.1016/j.combustflame.2017.07.027.
  • Yuan, T., L. Zhang, Z. Zhou, M. Xie, L. Ye, and F. Qi. 2011. Pyrolysis of n-heptane: Experimental and theoretical study. J.Phys. Chem. A 115 (9):1593–601. doi:10.1021/jp109640z.
  • Zamostny, P., Z. Bělohlav, L. Starkbaumová, and J. Patera. 2010. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products. J Anal Appl Pyrolysis 87 (2):207–16. doi:10.1016/j.jaap.2009.12.006.
  • Zhang, K., C. Banyon, J. J. Bugler, H. Curran, A. Rodriguez, O. Herbinet, F. Battin Leclerc, C. B’chir, and A. Karl. 2016. An updated experimental and kinetic modeling study of n-heptane oxidation. Combust. Flame 172:116–35. doi:10.1016/j.combustflame.2016.06.028.