170
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental and Numerical Study of Autoignition/Deflagration Transition Limit in a Flat Piston Optical Rapid Compression Machine

, , &
Pages 1543-1572 | Received 28 Jul 2022, Accepted 05 Jan 2023, Published online: 26 Feb 2023

References

  • Agarwal, A. K., A. P. Singh, and R. K. Maurya. 2017. Evolution, challenges and path forward for low temperature combustion engines. Prog. Energy Combust. Sci. 61:1–56. doi:10.1016/j.pecs.2017.02.001.
  • Bansal, G., and H. G. Im. 2011. Autoignition and front propagation in low temperature combustion engine environments. Combust. Flame 158 (11):2105–12. doi:10.1016/j.combustflame.2011.03.019.
  • Ben Houidi, M., J. Sotton, and M. Bellenoue. 2016. Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior. Fuel 186:476–95. doi:10.1016/j.fuel.2016.08.089.
  • Ben Houidi, M., J. Sotton, M. Bellenoue, and C. Strozzi. 2019. Effects of low temperature heat release on the aerodynamics of a flat piston rapid compression machine: Impact on velocity and temperature fields. Proc. Combust. Inst. 37 (4):4777–85. doi:10.1016/j.proci.2018.08.059.
  • Boumehdi, M. A., S. A. Stepanyan, P. Desgroux, G. Vanhove, and S. M. Starikovskaia. 2015. Ignition of methane- and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge. Combust. Flame 162 (4):1336–49. doi:10.1016/j.combustflame.2014.11.006.
  • Burnett, M. A., and M. S. Wooldridge. 2021. An experimental investigation of flame and autoignition behavior of propane. Combust. Flame 224:24–32. doi:10.1016/j.combustflame.2020.12.001.
  • Büttgen, R. D., T. Raffius, G. Grünefeld, H. J. Koß, and A. Heufer. 2019. High-speed imaging of the ignition of ethanol at engine relevant conditions in a rapid compression machine. Proc. Combust. Inst. 37 (2):1471–78. doi:10.1016/j.proci.2018.05.001.
  • Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering Combustion Research, San Diego: University of California. http://combustion.ucsd.edu.
  • Chen, J. H., E. R. Hawkes, R. Sankaran, S. D. Mason, and H. G. Im. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. fundamental analysis and diagnostics. Combust. Flame 145 (1–2):128–44. doi:10.1016/j.combustflame.2005.09.017.
  • Chong, C. T., and S. Hochgreb. 2011. Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV). Proc. Combust. Inst. 33 (1):979–86. doi:10.1016/j.proci.2010.05.106.
  • Cinar, C., A. Uyumaz, H. Solmaz, and T. Topgul. 2015. Effects of valve lift on the combustion and emissions of a HCCI gasoline engine. Energy Convers. Manage. 94 (x):159–68. doi:10.1016/j.enconman.2015.01.072.
  • D’adamo, A., M. Del Pecchia, S. Breda, F. Berni, S. Fontanesi, and J. Prager, 2017. Chemistry-based laminar flame speed correlations for a wide range of engine conditions for Iso-Octane, n-Heptane, toluene and gasoline surrogate fuels. In: SAE Technical Papers. SAE International.
  • Davis, S. G., and C. K. Law. 1998. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames. Symp. (Int). Combust. 27 (1):521–27. doi:10.1016/S0082-0784(98)80442-6.
  • Desantes, J. M., J. J. López, J. M. García-Oliver, and D. López-Pintor. 2017. A phenomenological explanation of the autoignition propagation under HCCI conditions. Fuel 206:43–57. doi:10.1016/j.fuel.2017.05.075.
  • Dirrenberger, P., P. A. Glaude, R. Bounaceur, H. Le Gall, A. P. Da Cruz, A. A. Konnov, and F. Battin-Leclerc. 2014. Laminar burning velocity of gasolines with addition of ethanol. Fuel 115:162–69. doi:10.1016/j.fuel.2013.07.015.
  • Ferris, A. M., A. J. Susa, D. F. Davidson, and R. K. Hanson. 2019. High-temperature laminar flame speed measurements in a shock tube. Combust. Flame 205:241–52. doi:10.1016/j.combustflame.2019.04.007.
  • Fieweger, K., R. Blumenthal, and G. Adomeit. 1997. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combust. Flame 109 (4):599–619. doi:10.1016/S0010-2180(97)00049-7.
  • Gong, X., and Z. Ren. 2021. Flame speed scaling in autoignition-assisted freely propagating n-heptane/air flames. Proc. Combust. Inst. 38 (2):2153–61. doi:10.1016/j.proci.2020.07.029.
  • Goodwin, D. G., H. K. Moffat, I. Schoegl, R. L. Speth, and B. W. Weber. 2022. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2. doi:10.5281/zenodo.48735.
  • Grogan, K. P., S. Scott Goldsborough, and M. Ihme. 2015. Ignition regimes in rapid compression machines. Combust. Flame 162 (8):3071–80. doi:10.1016/j.combustflame.2015.03.020.
  • Halter, F., Z. Chen, G. Dayma, C. Bariki, Y. Wang, P. Dagaut, and C. Chauveau. 2020. Development of an optically accessible apparatus to characterize the evolution of spherically expanding flames under constant volume conditions. Combust. Flame 212:165–76. doi:10.1016/j.combustflame.2019.10.027.
  • Haraldsson, G., P. Tunestål, B. Johansson, and J. Hyvönen, 2003. HCCI combustion phasing with closed-loop combustion control using variable compression ratio in a multi cylinder engine. In: SAE Technical Papers.
  • Hawkes, E. R., R. Sankaran, P. P. Pébay, and J. H. Chen. 2006. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combust. Flame 145 (1–2):145–59. doi:10.1016/j.combustflame.2005.09.018.
  • Huang, Y., C. J. Sung, and J. A. Eng. 2004. Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust. Flame 139 (3):239–51. doi:10.1016/j.combustflame.2004.08.011.
  • Im, H. G., P. Pal, M. S. Wooldridge, and A. B. Mansfield. 2015. A regime diagram for autoignition of homogeneous reactant mixtures with turbulent velocity and temperature fluctuations. Combust. Sci. Technol. 187 (8):1263–75. doi:10.1080/00102202.2015.1034355.
  • Konnov, A. A., A. Mohammad, V. R. Kishore, N. I. Kim, C. Prathap, and S. Kumar. 2018. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Prog. Energy Combust. Sci. 68:197–267. doi:10.1016/j.pecs.2018.05.003.
  • Kumar, K., J. E. Freeh, C. J. Sung, and Y. Huang. 2007. Laminar flame speeds of preheated iso-octane/o2/n2 and n-heptane/o2/n2 mixtures. J. Propuls. Power 23 (2):428–36. doi:10.2514/1.24391.
  • Kumar, R., A. Singhal, A. Katoch, and S. Kumar. 2020. Experimental investigations on laminar burning velocities of n-Heptane + air mixtures at higher mixture temperatures using externally heated diverging channel method. Energy and Fuels 34 (2):2405–16. doi:10.1021/acs.energyfuels.9b04249.
  • Mansfield, A. B., and M. S. Wooldridge. 2014. High-pressure low-temperature ignition behavior of syngas mixtures. Combust. Flame 161:2242–51. doi:10.1016/j.combustflame.2014.03.001.
  • Mansfield, A. B., M. S. Wooldridge, H. Di, and X. He. 2015. Low-temperature ignition behavior of iso-octane. Fuel 139:79–86. doi:10.1016/j.fuel.2014.08.019.
  • Mehl, M., W. J. Pitz, M. Sjöberg, and J. E. Dec, 2009. Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine. In: SAE Technical Papers. SAE International.
  • Pal, P., A. B. Mansfield, P. G. Arias, M. S. Wooldridge, and H. G. Im. 2015. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combust. Theory Modelling 19 (5):587–601. doi:10.1080/13647830.2015.1068373.
  • Pitts, W. M., E. Braun, R. D. Peacock, H. E. Mitler, E. L. Johnsson, P. A. Reneke, and L. G. Blevins. 2002. Temperature uncertainties for bare-bead and aspirated thermocouple measurements in fire environments. ASTM Special Technical Publication. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911800
  • Ranzi, E., A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli. 2014. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet. 46 (9):512–42. doi:10.1002/kin.20867.
  • Sankaran, R., H. G. Im, E. R. Hawkes, and J. H. Chen. 2005. The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proc. Combust. Inst. 30 (1):875–82. doi:10.1016/j.proci.2004.08.176.
  • Santner, J., and S. S. Goldsboroug. 2019. Hot-spot induced mild ignition: Numerical simulation and scaling analysis. Combust. Flame 209: 41–62. doi:10.1016/j.combustflame.2019.07.017.
  • Saxena, S., and I. D. Bedoya. 2013. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog. Energy Combust. Sci. 39 (5):457–88. doi:10.1016/j.pecs.2013.05.002.
  • Sileghem, L., V. A. Alekseev, J. Vancoillie, K. M. Van Geem, E. J. K. Nilsson, S. Verhelst, and A. A. Konnov. 2013. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene. Fuel 112:355–65. doi:10.1016/j.fuel.2013.05.049.
  • Silke, E. J., H. J. Curran, and J. M. Simmie. 2005. The influence of fuel structure on combustion as demonstrated by the isomers of heptane: A rapid compression machine study. Proc. Combust. Inst. 30 II (2):2639–47. doi:10.1016/j.proci.2004.08.180.
  • Strozzi, C., A. Claverie, V. Prevost, J. Sotton, and M. Bellenoue. 2019. HCCI and SICI combustion modes analysis with simultaneous PLIF imaging of formaldehyde and high-speed chemiluminescence in a rapid compression machine. Combust. Flame 202:58–77. doi:10.1016/j.combustflame.2019.01.002.
  • Strozzi, C., A. Mura, J. Sotton, and M. Bellenoue. 2012. Experimental analysis of propagation regimes during the autoignition of a fully premixed methane-air mixture in the presence of temperature inhomogeneities. Combust. Flame 159 (11):3323–41. doi:10.1016/j.combustflame.2012.06.011.
  • Strozzi, C., J. Sotton, A. Mura, and M. Bellenoue. 2008. Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine. Combust. Sci. Technol. 180 (10–11):1829–57. doi:10.1080/00102200802260656.
  • Strozzi, C., J. Sotton, A. Mura, and M. Bellenoue. 2009. Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique. Meas. Sci. Technol. 20:12. doi:10.1088/0957-0233/20/12/125403.
  • Susa, A. J., A. M. Ferris, D. F. Davidson, and R. K. Hanson. 2019. Experimental shock tube measurements of laminar burning velocity of n-heptane and iso-octane in the negative temperature coefficient regime. AIAA Scitech 2019 Forum, January 1–9. doi:10.2514/6.2019-0460.
  • Tarot, M., S. Jay, and J. -B. Michel. 2019. Modelling of auto-ignition to premixed flame transition in the context of a dual-fuel engine. Proc. European Combust. Meeting, 1–6.
  • Van Lipzig, J. P. J., E. J. K. Nilsson, L. P. H. De Goey, and A. A. Konnov. 2011. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90 (8):2773–81. doi:10.1016/j.fuel.2011.04.029.
  • Vermeer, D. J., J. W. Meyer, and A. K. Oppenheim. 1972. Auto-ignition of hydrocarbons behind reflected shock waves. Combust. Flame 18 (3):327–36. doi:10.1016/S0010-2180(72)80183-4.
  • Walton, S. M., X. He, B. T. Zigler, and M. S. Wooldridge. 2007. An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc. Combust. Inst. 31 II (2):3147–54. doi:10.1016/j.proci.2006.08.059.
  • Walton, S. M., X. He, B. T. Zigler, M. S. Wooldridge, and A. Atreya. 2007. An experimental investigation of iso-octane ignition phenomena. Combust. Flame 150 (3):246–62. doi:10.1016/j.combustflame.2006.07.016.
  • Wang, Z., Y. Qi, X. He, J. Wang, S. Shuai, and C. K. Law. 2015. Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 144:222–27. doi:10.1016/j.fuel.2014.12.061.
  • Warnatz, J., U. Maas, and R. W. Dibble. 2001. Combustion. Berlin, Heidelberg: Springer.
  • Xiouris, C., T. Ye, J. Jayachandran, and F. N. Egolfopoulos. 2016. Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments. Combust. Flame 163:270–83. doi:10.1016/j.combustflame.2015.10.003.
  • Yang, Z., Y. Qian, X. Yang, Y. Wang, Y. Wang, Z. Huang, and X. Lu. 2013. Autoignition of n-butanol/n-heptane blend fuels in a rapid compression machine under low-to-medium temperature ranges. Energy and Fuels 27 (12):7800–08. doi:10.1021/ef401774f.
  • Zeldovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39 (2):211–14. doi:10.1016/0010-2180(80)90017-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.