325
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Laminar Burning Velocity, Adiabatic Flame Temperature, and Pollutants of Biogas/Air Mixture at Various CO2 Concentrations and Plasma Assist

ORCID Icon, , &
Pages 1599-1621 | Received 30 Jul 2022, Accepted 16 Dec 2022, Published online: 22 Feb 2023

References

  • Bai, Z., Z. Wang, G. Yu, Y. Yang, and H. Metghalchi. 2018. Experimental study of laminar burning speed for premixed biomass/air flame. Journal of Energy Resources Technology 141 (2). doi: 10.1115/1.4041412.
  • Blanchard, V. P., N. Minesi, Y. Bechane, B. Fiorina, and C. O. Laux2022, January 3Experimental and numerical characterization of a lean premixed flame stabilized by nanosecond discharges. doi:10.2514/6.2022-2255.
  • Blanquart, G., P. Pepiot-Desjardins, and H. Pitsch. 2009. The chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156 (3):588–607. doi:10.1016/j.combustflame.2008.12.007.
  • Borghi, R., M. Destriau, and G. D. Soete. 1998. Combustion and Flames:chemical and physical principales, 371. Paris: Editions Technip.
  • Capuano, L. 2020. U.S. Energy Information Administration's International Energy Outlook 2020 (IEO2020). Washington, DC: Center for Strategic and International Studies. https://www.eia/gov/outlooks/ieo/pdf/ieo2020.pdf)
  • Chan, Y. L., M. M. Zhu, Z. Z. Zhang, P. F. Liu, and D. K. Zhang. 2015. The effect of CO2 dilution on the laminar burning velocity of premixed Methane/air flames. Energy Procedia 75:3048–53. doi:10.1016/j.egypro.2015.07.621.
  • Di Sabatino, F., T. F. Guiberti, J. P. Moeck, W. L. Roberts, and D. A. Lacoste. 2021. Actuation efficiency of nanosecond repetitively pulsed discharges for plasma-assisted swirl flames at pressures up to 3 bar. J. Phys. D: Appl. Phys. 54 (7):075208. doi:10.1088/1361-6463/abc583.
  • El-Mallah, A. A., S. Ibrahim, A. Farrag, and M. Gad. 2008. Experimental Investigations on the combustion of gaseous fuels, Third International Conference on Engineering, Sciences and Technologies, Egypt, March 24.
  • Glarborg, P., and L. L. B. Bentzen. 2008. Chemical effects of a high CO2 concentration in Oxy-fuel combustion of Methane. Energy & Fuels 22 (1):291–96. doi:10.1021/ef7005854.
  • Glarborg, P., J. A. Miller, and R. J. Kee. 1986. Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Combust. Flame 65 (2):177–202. doi:10.1016/0010-2180(86)90018-0.
  • Hinton, N., and R. Stone. 2014. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel 116:743–50. doi:10.1016/j.fuel.2013.08.069.
  • Kee, R. J., M. E. Coltrin, P. Glarborg, and H. Zhu. 2017. Chemically reacting flow: Theory, modeling, and simulation, 792. USA: John Wiley & Sons.
  • Khan, F., A. M. Elbaz, S. Saxena, O. Mannaa, and W. L. Roberts. 2021. Effect of CO2 dilution on Methane/Air flames at elevated pressures: An experimental and modeling study. Energy & Fuels 35 (3):2639–53. doi:10.1021/acs.energyfuels.0c03568.
  • Klimov, A., V. Bityurin, A. Kuznetsov, B. Tolkunov, N. Vystavkin, and M. Vasiliev. 2004, January 5. External and internal plasma- assisted combustion. 42nd AIAA Aerospace Sciences Meeting and Exhibit. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. doi:10.2514/6.2004-1014.
  • Kong, C., Z. Li, M. Aldén, and A. Ehn. 2019. Stabilization of a turbulent premixed flame by a plasma filament. Combust. Flame 208:79–85. doi:10.1016/j.combustflame.2019.07.002.
  • Metcalfe, W. K., S. M. Burke, S. S. Ahmed, and H. J. Curran. 2013. A hierarchical and comparative kinetic modeling study of C1 − C2 Hydrocarbon and Oxygenated fuels. Int. J. Chem. Kinet. 45 (10):638–75. doi:10.1002/kin.20802.
  • Nonaka, H. O. B., and F. M. Pereira. 2016. Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas. Fuel 182:382–90. doi:10.1016/j.fuel.2016.05.098.
  • Ratna Kishore, V., N. Duhan, M. R. Ravi, and A. Ray. 2008. Measurement of adiabatic burning velocity in natural gas-like mixtures. Exp. Therm Fluid Sci. 33 (1):10–16. doi:10.1016/j.expthermflusci.2008.06.001.
  • Ren, J.-Y., W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis. 2001. Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combust. Flame 124 (4):717–20. doi:10.1016/S0010-2180(00)00205-4.
  • Sagás, J. C., H. S. Maciel, and P. T. Lacava. 2016. Effects of non-steady state discharge plasma on natural gas combustion: Flammability limits, flame behavior, and hydrogen production. Fuel 182:118–23. doi:10.1016/j.fuel.2016.05.100.
  • Skeen, S., S. J. Skeen, D. S. Gantt, B. R. Trotter, and K. L. Birkemeier. 2009. Isolated right superior vena cava drainage into the left atrium diagnosed noninvasively in the peripartum period. Texas Heart Inst. J. 36 (6):611–14.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin. 2000. The GRI-MechTM Model for Natural Gas Combustion and NO Formation and Removal Chemistry. 3. http://combustion.berkeley.edu/gri-mech
  • Starik, A. M., B. I. Loukhovitski, A. S. Sharipov, and N. S. Titova. 2015. Physics and chemistry of the influence of excited molecules on combustion enhancement. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373 (2048):20140341. doi:10.1098/rsta.2014.0341.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39 (1):61–110. doi:10.1016/j.pecs.2012.05.003.
  • Sun, J., Q. Huang, Y. Tang, and S. Li. 2022. Stabilization and emission characteristics of gliding arc-assisted NH3/CH4/air premixed flames in a swirl combustor. Energy & Fuels 36 (15):8520–27. doi:10.1021/acs.energyfuels.2c01217.
  • University of California at San Diego. 2016. San diego Mechanism web page. Chemical-Kinetic Mechnisms for Combustion Applications. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
  • Won, S. H., M. S. Cha, C. S. Park, and S. H. Chung. 2007. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets. Proc Combust Inst 31 (1):963–70. doi:10.1016/j.proci.2006.07.166.
  • Xie, Y., J. Wang, M. Zhang, J. Gong, W. Jin, and Z. Huang. 2013. Experimental and numerical study on laminar flame characteristics of Methane Oxy-fuel mixtures highly diluted with CO2. Energy & Fuels 27 (10):6231–37. doi:10.1021/ef401220h.
  • Zahedi, P., and K. Yousefi. 2014. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures. J. Mech. Sci. Tech. 28 (1):377–86. doi:10.1007/s12206-013-0970-5.
  • Zeng, W., J. Liu, H. Ma, Y. Liu, and A. Liu. 2018. Experimental study on the flame propagation and laminar combustion characteristics of landfill gas. Energy 158:437–48. doi:10.1016/j.energy.2018.06.062.
  • Zhou, S., Y. Tong, Z. Zheng, W. Nie, Y. Yang, and X. Liu. 2021. Plasma-assisted flame stabilization by AC dielectric barrier discharge in burst mode. J. Appl. Phys. 130 (17):173305. doi:10.1063/5.0059369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.