198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gravity Effects on the Minimum Explosive Concentrations in 1-D Dust Explosion

, , , &
Pages 1622-1636 | Received 31 Jul 2022, Accepted 27 Dec 2022, Published online: 20 Feb 2023

References

  • Ballal, D. R. 1983. Flame propagation through dust clouds of carbon, coal, aluminum and magnesium in an environment of zero gravity. Proc. R. Soc. Lond. A 385:21–51.
  • Beck, H., N. Glienke, and C. Möhlmann. 1997. BIA-Report 13/97, Combustion and Explosion Characteristics of Dusts, HVBG, 1997.
  • Bu, Y., A. Addo, P. Amyotte, C. Yuan, C. Li, and X. Hou. 2022. Insight into the dust explosion hazard of pharmaceutical powders in the presence of flow aids. J. Loss Prev. Process Ind. 74:104655. doi:10.1016/j.jlp.2021.104655.
  • Buckmaster, J. D., and G. S. S. Ludford. 1982. Theory of Laminar Flames. Cambridge, UK: Cambridge University Press.
  • Cashdollar, K. L., and I. A. Zlochower. 2007. Explosion temperatures and pressures of metals and other elemental dust clouds. J. Loss Prev. Process Ind. 20 (4–6):337–48. doi:10.1016/j.jlp.2007.04.018.
  • Dobashi, R. 2017. Studies on accidental gas and dust explosions. Fire. Safety. J 91:21–27. doi:10.1016/j.firesaf.2017.04.029.
  • Elperin, T., N. Kleeorin, M. Liberman, and I. Rogachevskii. 2013. Tangling clustering instability for small particles in temperature stratified turbulence. Phys. Fluids 25 (8):085104. doi:10.1063/1.4816643.
  • Goroshin, S., J. H. S. Lee, and Y. Shoshin. 1998. Effect of the discrete nature of heat sources on flame propagation in particulate suspensions. Proc. Combust. Inst 27 (1):743–49. doi:10.1016/S0082-0784(98)80468-2.
  • Hanai, H., M. Ueki, K. Maruta, H. Kobayashi, S. Hasegawa, and T. Niioka. 1999. A lean flammability limit of polymethylmethacrylate particle-cloud in microgravity. Combust. Flame 118 (3):359–69. doi:10.1016/S0010-2180(99)00003-6.
  • Kim, W., T. Endo, T. Kato, H. Tsuchiya, and K. Choi. 2019. Ignition characteristics of amino acid powders. J. Loss Prev. Process Ind. 62:103976. doi:10.1016/j.jlp.2019.103976.
  • Kim, W., R. Saeki, R. Dobashi, T. Endo, K. Kuwana, T. Mogi, M. Lee, M. Mikami, and Y. Nakamura. 2021. Research on risk of dust explosions in microgravity for lunar and planetary exploration. Int. J. Microgravity Sci. Appl 38:380204.
  • Kobayashi, H., N. Ono, and Y. Okuyama. 1994. Flame propagation experiment of PMMA particle cloud in a microgravity environment. Proc. Combust. Inst 25 (1):1693–99. doi:10.1016/S0082-0784(06)80817-9.
  • Lam, F., X. Mi, and A. J. Higgins. 2017. Front roughening of flames in discrete media. Phys. Rev. E 96 (1):013107. doi:10.1103/PhysRevE.96.013107.
  • Lam, F. Y. K., X. Mi, and A. J. Higgins. 2020. Dimensional scaling of flame propagation in discrete particulate clouds. Combust. Theory Modell 24 (3):486–509. doi:10.1080/13647830.2019.1703044.
  • Liberman, M. A. 2021. Combustion physics: Flames detonations, explosions, astrophysical combustion and inertial confinement fusion, 16. Cham, Switzerland: Springer. Chap.
  • Liberman, M. A., M. F. Ivanov, and A. D. Kiverin. 2015. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames. J. Loss Prev. Process Ind. 38:176–86. doi:10.1016/j.jlp.2015.09.006.
  • Liu, J., Q. Chu, and D. Chen. 2021. On modeling the combustion of a single micron-sized aluminum particle with the effect of oxide cap. ACS. Omega 6:34263–75. doi:10.1021/acsomega.1c03502.
  • Mi, X., A. Fujinawa, and J. M. Bergthorson. 2022. A quantitative analysis of the ignition characteristics of fine iron particles. Combust. Flame 240:112011. doi:10.1016/j.combustflame.2022.112011.
  • Nifuku, M., S. Koyanaka, H. Ohya, C. Barre, M. Hatori, S. Fujiwara, S. Horiguchi, and I. Sochet. 2007. Ignitability characteristics of aluminum and magnesium dusts that are generated during the shredding of post-consumer wastes. J. Loss Prev. Process Ind. 20 (4–6):322–29. doi:10.1016/j.jlp.2007.04.034.
  • Palečka, J., J. Sniatowsky, S. Goroshin, A. J. Higgins, and J. M. Bergthorson. 2019. Combust. Flame 209:180–86. doi:10.1016/j.combustflame.2019.07.023.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (review). Combust. Expl. Shock Waves 51 (2):173–96. doi:10.1134/S0010508215020045.
  • Tang, F., S. Goroshin, A. Higgins, and J. Lee. 2009. Flame propagation and quenching in iron dust clouds. Proc. Combust. Inst 32 (2):1905–12. doi:10.1016/j.proci.2008.05.084.
  • Wu, H., H. Ou, H. Hsiao, and T. Shih. 2010. Explosion characteristics of aluminum nanopowders. Aerosol. Air. Quality. Res 10 (1):38–42. doi:10.4209/aaqr.2009.06.0043.
  • Yuan, C., P. R. Amyotte, M. N. Hossain, and C. Li. 2014. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO2 powder. J. Hazard. Mater. 274:322–30. doi:10.1016/j.jhazmat.2014.04.007.
  • Zhang, J., L. Sun, T. Sun, and H. Zhou. 2020. Study on explosion risk of aluminum powder under different dispersions. J. Loss Prev. Process Ind. 64:104042. doi:10.1016/j.jlp.2019.104042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.