772
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of flames in tubes with no-slip walls and the mechanism of tulip flame formation1

, &
Pages 1637-1665 | Received 23 Aug 2022, Accepted 21 Oct 2022, Published online: 23 Feb 2023

References

  • Bychkov, V., V. Akkerman, G. Fru, A. Petchenko, and L. E. Eriksson. 2007. Flame acceleration in the early stages of burning in tubes. Combust. Flame 150:263. doi:10.1016/j.combustflame.2007.01.004.
  • Byron Bird, R., and E. N. Stewart Lightfoot. 2002. Transport phenomena. Second ed. John Wiley and Sons, Inc.
  • Charlette, F., C. Meneveau, and D. Veynante. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion, part I: Non-dynamic formulation and initial tests. Combust. Flame 131:159. doi:10.1016/S0010-2180(02)00400-5.
  • Clanet, C., and C. Searby. 1996. On the “tulip flame” phenomenon. Combust. Flame 105:225.
  • Cohen, I. M., and P. K. Kundu. 1989. Fluid mechanics. third ed. Amsterdam: Elsevier.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12:1843. doi:10.1063/1.870436.
  • Dunn-Rankin, D. 2009. Tulip flames—the shape of deflagrations in closed tubes. In Combustion phenomena: Selected mechanisms of flame formation, propagation and extinction, ed. J. Jarosinski and B. Veyssiere, 93–100. Boca Raton, FL: CRC Press.
  • Dunn-Rankin, D., P. K. Barr, and R. F. Sawyer. 1986. Numerical and experimental study of “tulip” flame formation in a closed vessel. 21st Symp. (Int.) Combust 21 (1986):1291–301. doi:10.1016/S0082-0784(88)80360-6.
  • Dunn-Rankin, D., and R. F. Sawyer. 1998. Tulip flames: Changes in shapes of premixed flames propagating in closed tubes. Exp. Fluids 24:130. doi:10.1007/s003480050160.
  • Ellis, O. 1928. Flame movement in gaseous explosive mixtures. Fuel Sci. 7:502–08.
  • Ellis, O. C., and H. A. Robinson. 1925. New method of flame analysis. J. Chem. Soc. 127:760. doi:10.1039/CT9252700760.
  • Ellis, O. C., and R. V. Wheeler. 1925. The movement of flame in closed vessels. J. Chem. Soc. 127:764. doi:10.1039/CT9252700764.
  • Garnier, E., N. Adams, and P. Sagaut. 2009. Large Eddy Simulation for Compressible Flows. Springer Science & Business Media.
  • Gottlieb, S., and C. W. Shu. 1998. TotaL variation diminishing runge-kutta schemes. Math. Comp 67:73. doi:10.1090/S0025-5718-98-00913-2.
  • Guénoche, H., (1964) Chapter E - Flame propagation in tubes and closed vessels. In: Non-steady Flame Propagation. G. H. Markstein ed. AGARDograph, Elsevier, Vol. 75, 107–81, ISSN 03652467, ISBN 9781483196596., ISSN 03652467, ISBN 9781483196596.
  • Hariharan, A., and I. S. Wichman. 2014. Premixed flame propagation and morphology in a constant volume combustion chamber. Combust. Sci. Technol. 186:1025. doi:10.1080/00102202.2014.897340.
  • Hariharan, A., and I. S. Wichman. 2015. Structure and propagation of premixed flames in a closed combustion chamber with multiple ignition sources. Combust. Sci. Technol. 187:1562. doi:10.1080/00102202.2015.1050554.
  • Ivanov, M. F., A. D. Kiverin, I. S. Yakovenko, and M. A. Liberman. 2013. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls. Intern. J. Hydrogen Energy 38:16427. doi:10.1016/j.ijhydene.2013.08.124.
  • Jiang, G. -S., and C. -W. Shu. 1996. Efficient implementation of weighted ENO schemes. J. Comput. Physics 126:202. doi:10.1006/jcph.1996.0130.
  • Kéromnès, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C. -J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, et al. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160:995. doi:10.1016/j.combustflame.2013.01.001.
  • Landau, L. D., and E. M. Lifshitz. 1989. Fluid Mechanics. Oxford: Pergamon Press.
  • Liberman, M. A. 2021. Combustion physics: Flames, detonations, explosions, astrophysical combustion and inertial confinement fusion. eBook. Springer-Nature. doi:10.1007/978-3-030-85139-2.
  • Liberman, M. A., M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, A. A. Chukalovsky, and T. V. Rakhimova. 2010. Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 67:688. doi:10.1016/j.actaastro.2010.05.024.
  • Liberman, M., C. Wang, C. Qian, and J. Liu. 2019. Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures. Combust. Theory Modelling 23:467. doi:10.1080/13647830.2018.1551578.
  • Matalon, M., and P. Metzener. 1997. The propagation of premixed flames in closed tubes. J. Fluid Mech. 336:331. doi:10.1017/S0022112096004843.
  • Metzener, P., and M. Matalon. 2001. Premixed flames in closed cylindrical tubes. Combust. Theor. Model 5:463. doi:10.1088/1364-7830/5/3/312.
  • Ponizy, B., A. Claverie, and B. Veyssière. 2014. Tulip flame - the mechanism of flame front inversion. Combust. Flame 161:3051. doi:10.1016/j.combustflame.2014.06.001.
  • Rango, S. D., and D. W. Zing. 1999. Aerodynamic computations using a higher-order algorithm. 37th aerospace sciences Meeting and exhibit. AIAA Paper 99:0167.
  • Wang, C., C. Qian, J. Liu, and M. Liberman. 2018. Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air. Combust. Flame 197:400. doi:10.1016/j.combustflame.2018.08.017.
  • Wilke, C. R. 1950. A viscosity equation for gas mixtures. J. Comp. Phys 18:517. doi:10.1063/1.1747673.
  • Xiao, H., R. W. Houim, and E. S. Oran. 2015. Formation and evolution of distorted tulip flames. Combust. Flame 162:4084. doi:10.1016/j.combustflame.2015.08.020.
  • ZeldovichYa, B. 1947. On the theory of establishing a detonation in gases (in Russian Zh. Tekhn. Fiz.). J. Tech. Phys 17:3.