176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bayesian Model Calibration Using High-Fidelity Simulations of a Mach 8 Scramjet Isolator and Combustor

ORCID Icon &
Pages 3456-3474 | Received 05 May 2023, Accepted 21 May 2023, Published online: 27 Jul 2023

References

  • Abul-Huda, Y. M., and M. Gamba. 2015. Design and characterization of the Michigan hypersonic expansion tube facility (MHExT). In 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 1785.
  • Baccarella, D., Q. Liu, T. Lee, S. D. Hammack, and H. Do. 2017. The supersonic combustion facility ACT-2. In 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 0103.
  • Barwey, S., and V. Raman. 2021. A neural network-inspired matrix formulation of chemical kinetics for acceleration on GPUs. Energies 14 (9):2710. doi:10.3390/en14092710.
  • Bielawski, R., S. Barwey, S. Prakash, and V. Raman. 2023. Highly-scalable GPU-accelerated compressible reacting flow solver for modeling high-speed flows. Comput. Fluids 105972. doi:10.1016/j.compfluid.2023.105972.
  • Bolender, M. A., and D. B. Doman. 2007. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44 (2):374–87. doi:10.2514/1.23370.
  • Curran, E. T. 2001. Scramjet engines: The first forty years. J. Propuls. Power 17 (6):1138–48. doi:10.2514/2.5875.
  • Fiévet, R., V. Raman, and A. H. Auslender. 2019. Data-driven one-dimensional modeling of pseudoshocks. J. Propuls. Power 35 (2):313–27. doi:10.2514/1.B37175.
  • Foreman-Mackey, D., D. W. Hogg, D. Lang, and J. Goodman. 2013. Emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125 (925):306. doi:10.1086/670067.
  • Fulton, J. A., J. R. Edwards, H. A. Hassan, J. C. McDaniel, C. P. Goyne, R. D. Rockwell, A. D. Cutler, C. T. Johansen, and P. M. Danehy. 2014. Large-eddy/Reynolds-averaged Navier–Stokes simulations of reactive flow in dual-mode scramjet combustor. J. Propuls. Power 30 (3):558–75. doi:10.2514/1.B34929.
  • Gaitonde, D. V. 2015. Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72:80–99. doi:10.1016/j.paerosci.2014.09.002.
  • Goodman, J., and J. Weare. 2010. Ensemble samplers with affine invariance. Comm. App. Math Comp. Sci 5 (1):65–80. doi:10.2140/camcos.2010.5.65.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.4.0. https://www.cantera.org.
  • Greenshields, C. J., H. G. Weller, L. Gasparini, and J. M. Reese. 2010. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods. Fluids 63:1–21. doi:10.1002/fld.2069.
  • Grinsted, A. 2022. Ensemble MCMC sampler. https://github.com/grinsted/gwmcmc
  • Gruber, M., and A. Nejad. 1994. Development of a large-scale supersonic combustion research facility. In 32nd Aerospace Sciences Meeting and Exhibit., Reno, Nevada, 544.
  • Hannemann, K., J. Martinez Schramm, A. Wagner, and G. Ponchio Camillo. 2018. The high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR). 2018. JLSRF 4:1–14. doi:10.17815/jlsrf-4-168.
  • Hassanaly, M., H. Koo, C. F. Lietz, S. T. Chong, and V. Raman. 2018. A minimally-dissipative low-Mach number solver for complex reacting flows in OpenFOAM. Comput. Fluids 162:11–25. doi:10.1016/j.compfluid.2017.11.020.
  • Heiser, W. H., D. T. Pratt, D. H. Daley, and U. Mehta. 1994. Hypersonic airbreathing propulsion. AIAA. doi:10.2514/4.470356.
  • Landsberg, W. O., D. Curran, and A. Veeraragavan. 2022. Experimental flameholding performance of a scramjet cavity with an inclined front wall. Aerosp. Sci. Technol. 126:107622. doi:10.1016/j.ast.2022.107622.
  • Landsberg, W. O., T. Vanyai, T. J. McIntyre, and A. Veeraragavan. 2021. Dual/scram-mode combustion limits of ethylene and surrogate endothermically-cracked hydrocarbon fuels at Mach 8 equivalent high-enthalpy conditions. Proc. Combust. Inst. 38 (3):3835–43. doi:10.1016/j.proci.2020.07.003.
  • Larsson, J., S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl, and R. Vicquelin. 2015. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. part II: Large eddy simulations. Combust. Flame 162 (4):907–20. doi:10.1016/j.combustflame.2014.09.017.
  • Liu, Q., D. Baccarella, and T. Lee. 2020. Review of combustion stabilization for hypersonic airbreathing propulsion. Prog. Aerosp. Sci. 119:100636. doi:10.1016/j.paerosci.2020.100636.
  • Mueller, M. E., and V. Raman. 2014. Effects of turbulent combustion modeling errors on soot evolution in a turbulent nonpremixed jet flame. Combust. Flame 161 (7):1842–48. doi:10.1016/j.combustflame.2013.12.020.
  • Najm, H. N. 2009. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41 (1):35–52. doi:10.1146/annurev.fluid.010908.165248.
  • Nordin-Bates, K., C. Fureby, S. Karl, and K. Hannemann. 2017. Understanding scramjet combustion using LES of the HyShot II combustor. Proc. Combust. Inst. 36 (2):2893–900. doi:10.1016/j.proci.2016.07.118.
  • O’Brien, T. F., R. P. Starkey, and M. J. Lewis. 2001. Quasi-one-dimensional high-speed engine model with finite-rate chemistry. J. Propuls. Power 17 (6):1366–74. doi:10.2514/2.5889.
  • Perdikaris, P., D. Venturi, J. O. Royset, and G. E. Karniadakis. 2015. Multi-fidelity modelling via recursive co-kriging and gaussian–markov random fields. Proc. Math. Phys. Eng. Sci. P ROY SOC A-MATH PHY 471 (2179):20150018. doi:10.1098/rspa.2015.0018.
  • Prakash, S., C. Klarkowski, and V. Raman. 2022. Multi-fidelity modeling-based estimation of rotating detonation engine performance. AIAA SciTech Forum, San Diego, California, 0641. doi:10.2514/6.2022-0641.
  • Prakash, S., V. Raman, C. F. Lietz, W. A. Hargus, and S. A. Schumaker. 2021. Numerical simulation of a methane-oxygen rotating detonation rocket engine. Proc. Combust. Inst. 38 (3):3777–86. doi:10.1016/j.proci.2020.06.288.
  • Sato, T., F. Chacon, M. Gamba, and V. Raman. 2021. Mass flow rate effect on a rotating detonation combustor with an axial air injection. Shock Waves 31 (7):741–51. doi:10.1007/s00193-020-00984-7.
  • Sato, T., F. Chacon, L. White, V. Raman, and M. Gamba. 2021. Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 38 (3):3769–76. doi:10.1016/j.proci.2020.06.283.
  • Shapiro, A. H. 1953. The dynamics and thermodynamics of compressible fluid flow. New York: Ronald Press.
  • Smart, M. K. 2015. Flow modeling of pseudoshocks in backpressured ducts. Aiaa J. 53 (12):3577–88. doi:10.2514/1.J054021.
  • Smart, M. S. 2007. Scramjets. Aeronaut. J. 111 (1124):605–19. doi:10.1017/S0001924000004796.
  • Smith, G., Y. Tao, and H. Wang. 2016. Foundational fuel chemistry model version. 1 :FFCM–1. https://web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.html.
  • Stalker, R., A. Paull, D. Mee, R. Morgan, and P. Jacobs. 2005. Scramjets and shock tunnels—the Queensland experience. Prog. Aerosp. Sci. 41 (6):471–513. doi:10.1016/j.paerosci.2005.08.002.
  • Sullins, G., and G. McLafferty. 1992. Experimental results of shock trains in rectangular ducts. In AlAA 4th International Aerospace Planes Conference, Orlando, Florida, 5103. doi:10.2514/6.1992-5103.
  • Tang, Y., M. Hassanaly, V. Raman, B. Sforzo, and J. Seitzman. 2019. A comprehensive modeling procedure for estimating statistical properties of forced ignition. Combust. Flame 206:158–76. doi:10.1016/j.combustflame.2019.04.045.
  • Tian, L., L. Chen, Q. Chen, F. Li, and X. Chang. 2014. Quasi-one-dimensional multimodes analysis for dual-mode scramjet. J. Propuls. Power 30 (6):1559–67. doi:10.2514/1.B35177.
  • Torrez, S. M., J. F. Driscoll, M. Ihme, and M. L. Fotia. 2011. Reduced-order modeling of turbulent reacting flows with application to ramjets and scramjets. J. Propuls. Power 27 (2):371–82. doi:10.2514/1.50272.
  • Urzay, J. 2018. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid. Mech. 50 (1):593–627. doi:10.1146/annurev-fluid-122316-045217.
  • Vanyai, T., W. O. Landsberg, T. J. McIntyre, and A. Veeraragavan. 2021. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor. Combust. Flame 226:143–55. doi:10.1016/j.combustflame.2020.11.037.
  • Wang, H., and D. A. Sheen. 2015. Combustion kinetic model uncertainty quantification, propagation and minimization. Prog. Energy Combust. Sci. 47:1–31. doi:10.1016/j.pecs.2014.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.