137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of an Atmospheric Gas Turbine Model Combustor with Large-Eddy Simulation Using Finite-Rate Chemistry

ORCID Icon, , , &
Pages 3385-3398 | Received 07 May 2023, Accepted 21 May 2023, Published online: 28 Jul 2023

References

  • Berger, F. M., T. Hummel, M. Hertweck, J. Kaufmann, B. Schuermans, and T. Sattelmayer. 2017. High-frequency thermoacoustic modulation mechanisms in swirl-stabilized gas turbine combustors - part I: Experimental investigation of local flame response. J. Eng. Gas Turbines Power 139 (7):071501. doi:10.1115/1.4035591.
  • Boudier, G., N. Lamarque, G. Staffelbach, L. Y. M. Gicquela, and T. Poinsot. 2009. Thermo-acoustic stability of a helicopter gas turbine combustor using large eddy simulation. Int. J. Aeroacoustics 8 (1):69–93. doi:10.1260/147547209786234975.
  • Buschhagen, T., R. Gejji, J. Philo, L. Tran, J. E. P. Bilbao, and C. D. Slabaugh. 2018. Experimental investigation of self-excited combustion instabilities in a lean, premixed, gas turbine combustor at high pressure. J. Eng. Gas Turbines Power 140 (11):111503. doi:10.1115/1.4039760.
  • Charlette, F., C. Meneveau, and D. Veynante. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust. Flame 131 (1–2):159–80. doi:10.1016/S0010-2180(02)00400-5.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7):1843–63. doi:10.1063/1.870436.
  • Franzelli, B., E. Riber, L. Y. M. Gicquel, and T. Poinsot. 2011. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159 (2):621–37. doi:10.1016/j.combustflame.2011.08.004.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Zenodo. doi:10.5281/zenodo.1174508.
  • Gruhlke, P., H. Janbazi, I. Wlokas, C. Beck, and A. M. Kempf. 2020. Investigation of a high karlovitz, high pressure premixed jet flame with heat losses by LES. Combust. Sci. Technol. 192 (11):2138–70. doi:10.1080/00102202.2020.1781101.
  • Gruhlke, P., H. Janbazi, P. Wollny, I. Wlokas, C. Beck, B. Janus, and A. M. Kempf. 2021. Large-eddy simulation of a lifted high-pressure jet-flame with direct chemistry. Combust. Sci. Technol. 194 (14):2978–3002. doi:10.1080/00102202.2021.1903886.
  • Janbazi, H., K. Roderigo, I. Wlokas, and A. M. Kempf. 2019. Development of skeletal kinetic mechanisms at various conditions for methane combustion. Paper presented at 17th International Conference on Numerical Combustion, Aachen, Germany, May 06.
  • Kempf, A. M., S. Wysocki, and M. Pettit. 2012. An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60:58–60. doi:10.1016/j.compfluid.2012.02.027.
  • Klein, M., A. Sadiki, and J. Janicka. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2):652–65. doi:10.1016/S0021-9991(03)00090-1.
  • Lammel, O., M. Stöhr, P. Kutne, C. Dem, W. Meier, and M. Aigner. 2012. Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turbines Power 134 (4):041506. doi:10.1115/1.4004733.
  • Legier, J. P., T. Poinsot, and D. Veynante. 2000. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. Proc. of the Summer Program. Palo Alto, Pages 157–68.
  • Lu, T., and C. K. Law. 2008. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154 (4):761–74. doi:10.1016/j.combustflame.2008.04.025.
  • Nanjaiah, M., A. Pilipodi-Best, M. R. Lalanne, P. Fjodorow, C. Schulz, S. Cheskis, A. M. Kempf, I. Wlokas, and I. Rahinov. 2021. Experimental and numerical investigation of iron-doped flames: FeO formation and impact on flame temperature. Proc. Combust. Inst. 38 (1):1249–57. doi:10.1016/j.proci.2020.07.006.
  • Nanjaiah, M., K. Roderigo, H. Janbazi, A. M. Kempf, and I. Wlokas. 2021. Compact, global skeletal reaction mechanism for the combustion of xylene/air and n-butanol/air. Paper presented at 10th European Combustion Meeting, Naples, Italy, April 15.
  • Picciani, M. A., E. S. Richardson, and S. A. Navarro-Martinez. 2018. A thickened stochastic fields approach for turbulent combustion simulation. Flow Turbul. Combust. 101 (4):1119–36. doi:10.1007/s10494-018-9954-y.
  • Poinsot, T. J., and S. K. Lelef. 1992. Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys 101 (1):104–29. doi:10.1016/0021-9991(92)90046-2.
  • Poinsot, T., and D. Veynante. 2011. Theoretical and numerical combustion. 3rd ed. Toulouse: T. Poinsot.
  • Polifke, W., C. Wall, and P. Moin. 2006. Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow. J. Comput. Phys. 213 (1):437–49. doi:10.1016/j.jcp.2005.08.016.
  • Proch, F., and A. M. Kempf. 2015. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Comb. Inst. 35 (3):3337–45. doi:10.1016/j.proci.2014.07.036.
  • Sharifi, V., C. Beck, B. Janus, and A. M. Kempf. 2021. Design and testing of a high frequency thermoacoustic combustion experiment. AIAA J. 59 (8):3127–43. doi:10.2514/1.J060072.
  • Sharifi, V., C. Beck, and A. M. Kempf. 2018. Large-eddy simulation of acoustic flame response to high-frequency transverse excitations. AIAA J. 57 (1):327–40. doi:10.2514/1.J056818.
  • Sikalo, N., O. Hasemann, C. Schulz, A. M. Kempf, and I. Wlokas. 2014. A genetic algorithm-based method for the automatic reduction of reaction mechanisms. Int. J. Chem. Kinet. 46 (1):41–59. doi:10.1002/kin.20826.
  • Sikalo, N., O. Hasemann, C. Schulz, A. M. Kempf, and I. Wlokas. 2015. A genetic algorithm–based method for the optimization of reduced kinetics mechanisms. Int. J. Chem. Kinet. 47 (11):695–723. doi:10.1002/kin.20942.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, et al. 2000. http://www.me.berkeley.edu/gri_mech/.
  • van Leer, B. 1974. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (4):361–70. doi:10.1016/0021-9991(74)90019-9.
  • Wang, G., M. Boileau, and D. Veynante. 2011. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158 (11):2199–213. doi:10.1016/j.combustflame.2011.04.008.
  • Yoshizawa, A., and K. Horiuti. 1985. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Society Japan 54 (8):2834–39. doi:10.1143/JPSJ.54.2834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.