325
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling of NO Reduction on CeO2-Supported Pt and Pd Nanoclusters

, ORCID Icon, & ORCID Icon
Pages 3414-3425 | Received 07 May 2023, Accepted 21 May 2023, Published online: 27 Jul 2023

References

  • Adams, E. C., M. Skoglundh, M. Folic, E. C. Bendixen, P. Gabrielsson, and P.-A. Carlsson. 2015. Ammonia formation over supported platinum and palladium catalysts. Appl Catal B 165:10–19. doi:10.1016/j.apcatb.2014.09.064.
  • Auvray, X., and L. Olsson. 2015. Stability and activity of Pd-, Pt- and Pd–Pt catalysts supported on alumina for NO oxidation. Appl Catal B 168-169:342–52. doi:10.1016/j.apcatb.2014.12.035.
  • Balland, J., M. Parmentier, and J. Schmitt. 2014. Control of a combined SCR on filter and under-floor SCR system for low emission passenger cars. SAE Int. J. Engines 7 (3):1252–61. doi:10.4271/2014-01-1522.
  • Bera, P., K. Patil, V. Jayaram, G. Subbanna, and M. Hegde. 2000. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal–ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. J Catal 196:293–301. doi:10.1006/jcat.2000.3048.
  • Bradley, M. J., and B. M. Jones. 2002. Reducing global NOx emissions: Developing advanced energy and transportation technologies. Ambio: A J. Human Environ. 31:141–49. doi:10.1579/0044-7447-31.2.141.
  • Branda, M. M., R. M. Ferullo, M. Causa, and F. Illas. 2011. Relative stabilities of low index and stepped CeO2 surfaces from hybrid and GGA + U implementations of density functional theory. J. Phys. Chem. C 115 (9):3716–21. doi:10.1021/jp111427j.
  • Burch, R., and A. Ramli. 1998. A comparative investigation of the reduction of NO by CH4 on Pt, Pd, and Rh catalysts. Appl. Catal. B 15:49–62. doi:10.1016/S0926-3373(97)00036-2.
  • Cordatos, H., and R. Gorte. 1996. CO, NO, and H2 adsorption on ceria-supported Pd. J. Catal. 159:112–18. doi:10.1006/jcat.1996.0070.
  • Desantes, J., S. Molina, R. Novella, and M. Lopez-Juarez. 2020. Comparative global warming impact and NOX emissions of conventional and hydrogen automotive propulsion systems. Energy Convers. Manage. 221:113137. doi:10.1016/j.enconman.2020.113137.
  • Dudarev, S. L., G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. 1998. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57:1505. doi:10.1103/PhysRevB.57.1505.
  • Duncan, B. N., L. N. Lamsal, A. M. Thompson, Y. Yoshida, Z. Lu, D. G. Streets, M. M. Hurwitz, and K. E. Pickering. 2016. A space-based, high-resolution view of notable changes in urban NO x pollution around the world (2005-2014). J. Geophys. Res.: Atmos 121 (2):976–96. doi:10.1002/2015JD024121.
  • France, L. J., Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang, and X. Li. 2017. Ceria modified FeMnOx—enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl Catal B 206:203–15. doi:10.1016/j.apcatb.2017.01.019.
  • Gómez-García, M., V. Pitchon, and A. Kiennemann. 2005. Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 31:445–67. doi:10.1016/j.envint.2004.09.006.
  • Gonzalez, J. D., K. Shojaee, B. S. Haynes, and A. Montoya. 2018. The effect of surface coverage on N2, NO and N2O formation over Pt (111). Phys. Chem. 20 (39):25314–23. doi:10.1039/C8CP04066D.
  • Grimme, S., J. Antony, S. Ehrlich, and H. Krieg. 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 (15):154104. doi:10.1063/1.3382344.
  • Gu, Q., L. Wang, Y. Wang, and X. Li. 2019. Effect of praseodymium substitution on La1-xPrxmno3 (x= 0–0.4) perovskites and catalytic activity for NO oxidation. J. Phys. Chem. Solids 133:52–58. doi:10.1016/j.jpcs.2019.05.001.
  • Harrison, B., A. Diwell, and C. Hallett. 1988. Promoting platinum metals by ceria. Platin Met. Rev. 32:73–83.
  • Henkelman, G., B. P. Uberuaga, and H. Jonsson. 2000. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113:9901–04. doi:10.1063/1.1329672.
  • Hu, X., J. Chen, W. Qu, R. Liu, D. Xu, Z. Ma, and X. Tang. 2021. Sulfur-resistant ceria-based low-temperature SCR catalysts with the non-bulk electronic states of ceria. Environ. Sci. Technol. 55 (8):5435–41. doi:10.1021/acs.est.0c08736.
  • Jin, Q., Y. Shen, and S. Zhu. 2016. Praseodymium oxide modified CeO2/Al2O3 catalyst for selective catalytic reduction of NO by NH3. Chin. J. Chem. 34 (12):1283–90. doi:10.1002/cjoc.201600565.
  • Khosravi, M., C. Sola, A. Abedi, R. Hayes, W. Epling, and M. WOtsov. 2014. Oxidation and selective catalytic reduction of NO by propene over Pt and Pt: Pd diesel oxidation catalysts. Appl. Catal. B 147:264–74. doi:10.1016/j.apcatb.2013.08.034.
  • Kijlstra, W. S., D. S. Brands, H. I. Smit, E. K. Poels, and A. Bliek. 1997. Mechanism of the selective catalytic reduction of NO with NH3over MnOx/Al2O3. J. Catal. 171:219–30. doi:10.1006/jcat.1997.1789.
  • Kim, G. 1982. Ceria-promoted three-way catalysts for auto exhaust emission control. Ind. Eng. Chem. Prod. Res. Dev. 21 (2):267–74. doi:10.1021/i300006a014.
  • Koltsakis, G., I. Kandylas, and A. Stamatelos. 1998. Three-way catalytic converter modeling and applications. Chem. Eng. Commun. 164:153–89. doi:10.1080/00986449808912363.
  • Kresse, G., and J. Furthmüller. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (16):11169. doi:10.1103/PhysRevB.54.11169.
  • Li, Z., M. N. Marei, A. Farooq, A. R. Masri, and A. Montoya. 2023. Micro-kinetics of ethylene and methane oxidation on platinum. The Chem. Engg. J. 464:142608. doi:10.1016/j.cej.2023.142608.
  • Liu, L., Y. Cao, W. Sun, Z. Yao, B. Liu, F. Gao, and L. Dong. 2011. Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction. Catal. Today 175:48–54. doi:10.1016/j.cattod.2011.04.018.
  • Liu, L., Z. Yao, Y. Deng, F. Gao, B. Liu, and L. Dong. 2011. Morphology and crystal‐plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. Chem. Cat. 3:978–89. doi:10.1002/cctc.201000320.
  • Marei, M. N., H. A. Khan, J. A. Badra, A. Montoya, A. A. M. Farooq, and A.R. Masri. 2022. Comparative study of the catalytic oxidation of hydrocarbons on platinum and palladium wires and nanoparticles. Energy & Fuels 36 (4):2044–57. doi:10.1021/acs.energyfuels.1c04136.
  • Mavrikakis, M., L. B. Hansen, J. J. Mortensen, B. Hammer, and J. K. Nørskov. 1999. Dissociation of N 2 NO, and CO on transition metal surfaces. In Transition state modeling for catalysis, 245–58. American Chemical Society. doi:10.1021/bk-1999-0721.ch019.
  • Nolan, M., S. C. A. W. Parker. 2005. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595 (1–3):223–32. doi:10.1016/j.susc.2005.08.015.
  • Nováková, J. 2001. Reduction of NO by hydrogen versus reduction by CO over Pt, Pd and Rh clusters in NaX zeolite. Appl. Catal. B 30 (3–4):445–57. doi:10.1016/S0926-3373(00)00260-5.
  • Novakova, J., and L. Kubelkova. 1997. Contribution to the mechanism of NO reduction by CO over Pt/NaX zeolite. Appl. Catal. B 14:273–86. doi:10.1016/S0926-3373(97)00029-5.
  • Perdew, J. P., K. Burke, and M. Ernzerhof. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18):3865. doi:10.1103/PhysRevLett.77.3865.
  • Praveena, V., and M. L. J. Martin. 2018. A review on various after treatment techniques to reduce NOx emissions in a CI engine. J. Energy Inst. 91 (5):704–20. doi:10.1016/j.joei.2017.05.010.
  • Tanikawa, K., and C. Egwa. 2011. Effect of barium addition over palladium catalyst for CO–NO–O2 reaction. J. Mol. Catal. A Chem. 349 (1–2):94–99. doi:10.1016/j.molcata.2011.08.025.
  • Thomas, C. R., J. A. Pihl, V. Y. Prikhodko, M. K. Kidder, J. A. Lauterbach, and T. J. Joops. 2021. The effects of ceria loading on three-way catalysts for passive SCR operation. Catal. Commun. 156:106308. doi:10.1016/j.catcom.2021.106308.
  • Törncrona, A., M. Skoglundh, P. Thormählen, E. Fridell, and E. Jobson. 1997. Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -influence of pretreatment and gas composition. Appl. Catal. B 14:131–45. doi:10.1016/S0926-3373(97)00018-0.
  • Vyas, S., R. W. Grimes, D. H. A. R. Gay. 1998. Structure, stability and morphology of stoichiometric ceria crystallites. J. Chem. Soc. Faraday Trans. 94 (3):427–34. doi:10.1039/a707052g.
  • Wang, Y., R. Oord, D. Van Den Berg, B. M. Weckhuysen, and M. Makee. 2017. Oxygen vacancies in reduced Rh/ and Pt/ceria for highly selective and reactive reduction of NO into N 2 in excess of O 2. Chem. Cat. 9 (15):2935–38. doi:10.1002/cctc.201700578.
  • Wang, Y., A. Zhu, Y. Zhang, C. Au, X. Yang, and C. Shi. 2008. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction. Appl. Catal. B 81:141–49. doi:10.1016/j.apcatb.2007.12.005.
  • Wanklyn, B., and B. Garrard. 1984. The flux growth of large thoria and ceria crystals. J. Cryst. Growth 66:346–50. doi:10.1016/0022-0248(84)90218-5.
  • Yao, X., T. Kong, L. Chen, S. Ding, F. Yang, and L. Dong. 2017. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect. Appl. Surf. Sci. 420:407–15. doi:10.1016/j.apsusc.2017.05.156.
  • Zhang, L., G. Spezzati, V. Muravev, M. A. Verheijen, B. Zijlstra, I. A. W. Filot, Y. Q. Su, M. W. Chang, and E. J. M. Hensen. 2021. Improved Pd/CeO2 Catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe doping. ACS Catal. 11 (9):5614–27. doi:10.1021/acscatal.1c00564.