221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Particle Size Distribution and Complex Refraction Index of Alumina on Infrared Rocket Plume Signatures

, , &
Pages 3232-3247 | Received 17 May 2023, Accepted 20 May 2023, Published online: 25 Jul 2023

References

  • Anfimov, N. A., G. F. Karabadjak, B. A. Khmelinin, Y. A. Plastinin, and A. V. Rodionov. 1993. Analysis of mechanisms and nature of radiation from aluminum oxide in different phase states in solid rocket exhaust plumes. AIAA 28th Thermophysics C. doi:10.2514/6.1993-2818.
  • Baek, S. W., and M. Y. Kim. 1997. Analysis of radiative heating of a rocket plume base with the finite-volume method. Int. J. Heat Mass. Transf 40 (7):1501–08. doi:10.1016/S0017-9310(96)00257-8.
  • Bakhir, L. P., G. I. Levashenko, and V. V. Tamanovich. 1977. Refinement of the imaginary part of the complex refractive index of liquid aluminum oxide. J. Appl. Spectrosc. 26 (3):378–83. doi:10.1007/BF00617449.
  • Baudoux, P. E., A. Roblin, and P. Chervet. 2001. New approach for radiative-transfer computations in axisymmetric scattering hot media. J. Thermophys. Heat Trans 15 (3):317–25. doi:10.2514/2.6628.
  • Binauld, Q., J. M. Lamet, L. Tessé, P. Rivière, and A. Soufiani. 2019. Numerical simulation of radiation in high altitude solid propellant rocket plumes. Acta Astronaut. 158:351–60. doi:10.1016/j.actaastro.2018.05.041.
  • Cai, G., D. Zhu, and X. Zhang. 2007. Numerical simulation of the infrared radiative signatures of liquid and solid rocket plumes. Aerosp. Sci. Technol. 11 (6):473–80. doi:10.1016/j.ast.2007.02.008.
  • Carlotti, S., and F. Maggi. 2021. Experimental techniques for characterization of particles in plumes of sub-scale solid rocket motors. Acta Astronaut. 186:496–507. doi:10.1016/j.actaastro.2021.06.011.
  • Dombrovsky, L. A. 1996. Radiation heat transfer in disperse systems. New York: Begell House.
  • Duval, R., A. Soufiani, and J. Taine. 2004. Coupled radiation and turbulent multiphase flow in an aluminised solid propellant rocket engine. J. Quant. Spectrosc. Radiat. Transf. 84 (4):513–26. doi:10.1016/S0022-4073(03)00268-1.
  • Everson, J., and H. F. Nelson. 1993. Rocket plume radiation base heating by reverse monte carlo simulation. J. Thermophys. Heat Transf 7 (4):717–23. doi:10.2514/3.482.
  • Fiveland, W. A. 1988. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. J. Thermophys. Heat Transf 2 (4):309–16. doi:10.2514/3.105.
  • Gu, B., M. Y. Kim, and S. W. Baek. 2019. Analysis of the IR signature and radiative base heating from a supersonic solid rocket exhaust plume. Int. J. Aeronaut. Space Sci 20 (2):423–32. doi:10.1007/s42405-018-0135-y.
  • Hermsen, R. W. 1981. Aluminum oxide particle size for solid rocket motor performance prediction. J. Spacecraft 18 (6):483–90. doi:10.2514/3.57845.
  • Kim, M. Y. 2008. Assessment of the axisymmetric radiative heat transfer in a cylindrical enclosure with the finite volume method. Int. J. Heat Mass. Transf 51 (21–22):5144–53. doi:10.1016/j.ijheatmasstransfer.2008.03.012.
  • Kim, M. Y., M. J. Yu, J. H. Cho, and S. W. Baek. 2008. Influence of particles on radiative base heating from the rocket exhaust plume. J. Spacecr Rockets 45 (3):454–58. doi:10.2514/1.32229.
  • Kischkat, J., S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, et al. 2012. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51(28):6789–98. doi:10.1364/AO.51.006789.
  • Ko, J. Y., E. Lee, and S. Kwon. 2019. Influence of optical properties of alumina particles on the radiative base heating from solid rocket plume. Adv. Space Res. 64 (2):514–26. doi:10.1016/j.asr.2019.04.024.
  • Kuzmin, V. A., E. I. Maratkanova, and I. A. Zagray. 2017. Modeling of thermal radiation of heterogeneous combustion products in the model solid rocket engine plume. Procedia. Eng. 206:1801–07. doi:10.1016/j.proeng.2017.10.716.
  • Kuzmin, V. A., E. I. Maratkanova, I. A. Zagray, and R. V. Rukavishnikova. 2015. Thermal radiation of heterogeneous combustion products in the model rocket engine plume. Thermophys. Aeromech. 22 (3):371–86. doi:10.1134/S0869864315030129.
  • Lacis, A. A., and V. Oinas. 1991. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res. 96 (D5):9027–63. doi:10.1029/90JD01945.
  • Liu, F., G. J. Smallwood, and O. L. Gulder. 1999. Application of statistical narrowband model to three-dimensional absorbing-emitting-scattering media. J. Thermophys. Heat Transf 13 (3):285–91. doi:10.2514/2.6453.
  • Modest, M. F. Radiative Heat Transfer. 3rd. Elsevier: New York. 2013. doi:10.1016/B978-0-12-386944-9.50023-6
  • Ozen, G. 2015. Thermal radiation from solid propellant rocket motor plume. PhD diss., Middle East Technical University.
  • Ozen, G., and N. Selçuk. 2014. Sensitivity of radiation modeling to property estimation techniques in the freeboard of lignite-fired bubbling fluidized bed combustors (BFBCs). Combust. Sci. Technol 186 (4–5):684–97. doi:10.1080/00102202.2014.883848.
  • Plastinin, Y., H. Sipatchev, G. Karabadzhak, B. Khmelinin, A. Khiebnikov, and Y. Shishkin. 2000. Influence of alumina particles’ phase transition on its radiation in the middle infrared and ultraviolet regions of spectrum. 38th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.2000-735.
  • Querry, M. R. 1985. Optical Constants. Kansas City, MO: AD-A158 623, University of Missouri.
  • Rialland, V., A. Guy, D. Gueyffier, P. Perez, A. Roblin, and T. Smithson. 2016. Infrared signature modelling of a rocket jet plume - comparison with flight measurements. J. Phys. Conf. Ser. 676 (1):012020. doi:10.1088/1742-6596/676/1/012020.
  • Sambamurthi, J. K. 1996. Al2O3 collection and sizing from solid rocket motor plumes. J. Propuls. Power 12 (3):598–604. doi:10.2514/3.24075.
  • Shusser, M., E. Mograbi, and I. Immer. 2012. Modeling gas radiative properties in a rocket motor plume. ASME 2012 Summer Heat Transfer C, Rio Grande, Puerto Rico.
  • Yadav, R., C. Balaji, and S. P. Venkateshan. 2017. Implementation of SLW model in the radiative heat transfer problems with particles and high temperature gradients. Int. J. Numer. Methods Heat Fluid Flow 27 (5):1128–41. doi:10.1108/HFF-03-2016-0095.
  • Zhang, D., L. Bai, Y. Wang, Q. Lv, and T. Zhang. 2022. An improved SHDOM coupled with CFD for simulating infrared radiation signatures of rocket plumes. Infrared Phys. Technol 122:104054. doi:10.1016/j.infrared.2022.104054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.