349
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of Ammonia MILD Combustion in Systems with Internal Recirculation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3513-3528 | Received 20 May 2023, Accepted 29 May 2023, Published online: 25 Jul 2023

References

  • Amaduzzi, R., G. Ceriello, M. Ferrarotti, G. Sorrentino, and A. Parente. 2020. Evaluation of modeling approaches for MILD combustion systems with internal recirculation. Front. Mechan. Engg. 6:20. doi:10.3389/fmech.2020.00020.
  • Aminian, J., C. Galletti, S. Shahhosseini, and L. Tognotti. 2012. Numerical investigation of a MILD combustion burner: Analysis of mixing field, chemical kinetics and turbulence-chemistry interaction. Flow Turbul. Combust. 88 (4):597–623. doi:10.1007/s10494-012-9386-z.
  • Aminian, J., C. Galletti, and L. Tognotti. 2016. Extended EDC local extinction model accounting finite-rate chemistry for MILD combustion. Fuel 165:123–33. doi:10.1016/j.fuel.2015.10.041.
  • ANSYS Fluent. 2012. 14.5 Theory Guide. Canonsburg, PA, USA: ANSYS Inc.
  • Ariemma, G. B., P. Sabia, G. Sorrentino, P. Bozza, M. de Joannon, and R. Ragucci. 2021. Influence of water addition on MILD ammonia combustion performances and emissions. Proc. Combust. Inst. 38 (4):5147–54. doi:10.1016/j.proci.2020.06.143.
  • Ariemma, G. B., G. Sorrentino, R. Ragucci, M. de Joannon, and P. Sabia. 2022. Ammonia/Methane combustion: Stability and NOx emissions. Combust. Flame 241:112071. doi:10.1016/j.combustflame.2022.112071.
  • Cavaliere, A., and M. De Joannon. 2004. Mild combustion. Prog. Energ. Combust. 30 (4):329–66. doi:10.1016/j.pecs.2004.02.003.
  • Crabtree, G. W., M. S. Dresselhaus, and M. V. Buchanan. 2004. The hydrogen economy. Citat.: Phys. Today 57 (12):39. doi:10.1063/1.1878333.
  • Evans, M. J., P. R. Medwell, and Z. F. Tian. 2015. Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model. 187 (7):1093–109. doi:10.1080/00102202.2014.1002836.
  • Evans, A., V. Strezov, and T. J. Evans. 2012. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sust. Energ. Rev. 16 (6):4141–47. doi:10.1016/j.rser.2012.03.048.
  • Ferrarotti, M., M. Fürst, E. Cresci, W. De Paepe, and A. Parente. 2018. Key modeling aspects in the simulation of a quasi-industrial 20 kw moderate or intense low-oxygen dilution combustion chamber. Ener. Fuels 32 (10):10228–41. doi:10.1021/acs.energyfuels.8b01064.
  • Filipe Ramos, C., R. C. Rocha, P. M. R. Oliveira, M. Costa, and X. S. Bai. 2019. Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames. Fuel 254:115693. doi:10.1016/j.fuel.2019.115693.
  • Giuntini, L., L. Frascino, G. B. Ariemma, C. Galletti, G. Sorrentino, and R. Ragucci. 2023. Performance Assessment of Modeling Approaches for Moderate or Intense Low-Oxygen Dilution Combustion in a Scale-Bridging BurnerPerformance Assessment of Modeling Approaches for Moderate or Intense Low-Oxygen Dilution Combustion in a Scale-Bridging Burner. Energy Fuels 37 (13):9500–9513. doi:10.1021/acs.energyfuels.3c00597.
  • Göktolga, M. U., J. A. Van Oijen, and L. P. H. De Goey. 2015. 3D DNS of MILD combustion: A detailed analysis of heat loss effects, preferential diffusion, and flame formation mechanisms. Fuel 159:784–95. doi:10.1016/j.fuel.2015.07.049.
  • Han, X., Z. Wang, M. Costa, Z. Sun, Y. He, and K. Cen. 2019. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust. Flame 206:214–26. doi:10.1016/j.combustflame.2019.05.003.
  • Hayakawa, A., Y. Arakawa, R. Mimoto, K. D. K. A. Somarathne, T. Kudo, and H. Kobayashi. 2017a. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. Int. J. Hydrog Energy 42 (19):14010–18. doi:10.1016/j.ijhydene.2017.01.046.
  • Hayakawa, A., Y. Arakawa, R. Mimoto, K. D. K. A. Somarathne, T. Kudo, and H. Kobayashi. 2017b. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. Int. J. Hydrog Energy 42 (19):14010–18. doi:10.1016/j.ijhydene.2017.01.046.
  • Hayakawa, A., T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi. 2015. Laminar burning velocity and markstein length of ammonia/air premixed flames at various pressures. Fuel 159:98–106. doi:10.1016/j.fuel.2015.06.070.
  • Ichikawa, A., A. Hayakawa, Y. Kitagawa, K. D. Kunkuma Amila Somarathne, T. Kudo, and H. Kobayashi. 2015. Laminar burning velocity and markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int. J. Hydrog Energy 40 (30):9570–78. doi:10.1016/j.ijhydene.2015.04.024.
  • Klerke, A., C. H. Christensen, J. K. Nørskov, and T. Vegge. 2008. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 18 (20):2304–10. doi:10.1039/b720020j.
  • Klippenstein, S. J., L. B. Harding, P. Glarborg, and J. A. Miller. 2011. The role of NNH in NO formation and control. Combust. Flame 158 (4):774–89. doi:10.1016/j.combustflame.2010.12.013.
  • Kobayashi, H., A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor. 2019. Science and technology of ammonia combustion. Proc. Combust. Inst. 37 (1):109–33. doi:10.1016/j.proci.2018.09.029.
  • Kurata, O., N. Iki, T. Inoue, T. Matsunuma, T. Tsujimura, H. Furutani, M. Kawano, K. Arai, E. C. Okafor, A. Hayakawa, et al. 2019. Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proc. Combust. Inst. 37 (4):4587–95. doi:10.1016/j.proci.2018.09.012.
  • Kurata, O., N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, and A. Hayakawa. 2017. Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations. Proc. Combust. Inst. 36 (3):3351–59. doi:10.1016/j.proci.2016.07.088.
  • Lewandowski, M. T., A. Parente, and J. Pozorski. 2020. Generalised Eddy Dissipation concept for MILD combustion regime at low local Reynolds and Damköhler numbers. Part 1: model framework development. Fuel 278:117743. doi:10.1016/j.fuel.2020.117743.
  • Li, Q. 2020. An improved gas-kinetic scheme for multimaterial flows. Commun. Comput. Phys 27 (1):145–66. doi:10.4208/cicp.OA-2018-0297.
  • Li, J., H. Huang, N. Kobayashi, Z. He, Y. Osaka, and T. Zeng. 2015. Numerical study on effect of oxygen content in combustion air on ammonia combustion. Energy 93:2053–68. doi:10.1016/j.energy.2015.10.060.
  • Maas, U., and S. B. Pope. 1992. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (3–4):239–64. doi:10.1016/0010-2180(92)90034-M.
  • Mei, B., X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, and Y. Li. 2019. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combust. Flame 210:236–46. doi:10.1016/j.combustflame.2019.08.033.
  • Mei, B., J. Zhang, X. Shi, Z. Xi, and Y. Li. 2021. Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm. Combust. Flame 231:111472. doi:10.1016/j.combustflame.2021.111472.
  • Nakamura, H., S. Hasegawa, and T. Tezuka. 2017. Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile. Combust. Flame 185:16–27. doi:10.1016/j.combustflame.2017.06.021.
  • Okafor, E. C., Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi. 2018. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust. Flame 187:185–98. doi:10.1016/j.combustflame.2017.09.002.
  • Parente, A., M. R. Malik, F. Contino, A. Cuoci, and B. B. Dally. 2016. Extension of the Eddy Dissipation concept for turbulence/chemistry interactions to MILD combustion. Fuel 163:98–111. doi:10.1016/j.fuel.2015.09.020.
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. 10 (3):319–39. doi:10.1016/0360-1285(84)90114-X.
  • Sabia, P., G. Sorrentino, P. Bozza, G. Ceriello, R. Ragucci, and M. De Joannon. 2019. Fuel and thermal load flexibility of a MILD burner. Proc. Combust. Inst. 37 (4):4547–54. doi:10.1016/j.proci.2018.09.003.
  • Song, Y., H. Hashemi, J. M. Christensen, C. Zou, P. Marshall, and P. Glarborg. 2016. Ammonia oxidation at high pressure and intermediate temperatures. Fuel 181:358–65. doi:10.1016/j.fuel.2016.04.100.
  • Sorrentino, G., P. Sabia, P. Bozza, R. Ragucci, and M. de Joannon. 2017. Impact of external operating parameters on the performance of a cyclonic burner with high level of internal recirculation under MILD combustion conditions. Energy 137:1167–74. doi:10.1016/j.energy.2017.05.135.
  • Sorrentino, G., P. Sabia, P. Bozza, R. Ragucci, and M. de Joannon. 2019. Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions. Appl. Energ. 254:113676. doi:10.1016/j.apenergy.2019.113676.
  • Stagni, A., S. Arunthanayothin, L. Pratali Maffei, O. Herbinet, F. Battin-Leclerc, and T. Faravelli. 2022. An experimental, theoretical and kinetic-modeling study of hydrogen sulfide pyrolysis and oxidation. Chem. Engg. J. 446:136723. doi:10.1016/j.cej.2022.136723.
  • Tuna, P., C. Hulteberg, and S. Ahlgren. 2014. Techno-economic assessment of nonfossil ammonia production. Environ. Progr. Sustain. Energy 33 (4):1290–97. doi:10.1002/ep.11886.
  • Valera-Medina, A., H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen. 2018. Ammonia for power. Prog. Energ. Combust. 69:63–102. doi:10.1016/j.pecs.2018.07.001.
  • Wang, G., A. Mitsos, and W. Marquardt. 2017. Conceptual design of ammonia-based energy storage system: System design and time-invariant performance. AIChE J. 63 (5):1620–37. doi:10.1002/aic.15660.
  • Zhang, X., S. P. Moosakutty, R. P. Rajan, M. Younes, and S. M. Sarathy. 2021. Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combust. Flame 234:111653. doi:10.1016/j.combustflame.2021.111653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.