249
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Artificial Neural Networks-Based Ignition Delay Time Prediction for Natural Gas Blends

ORCID Icon & ORCID Icon
Pages 3248-3261 | Received 01 May 2023, Accepted 05 Jun 2023, Published online: 26 Jul 2023

References

  • Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. 2016. TensorFlow: large-scale machine learning on heterogeneous distributed systems. doi:10.48550/arxiv.1603.04467.
  • Abdul Jameel, A. G., V. Van Oudenhoven, A. H. Emwas, and S. M. Sarathy. 2018. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks. Energy & Fuels 32 (5):6309–29. accessed November 8, 2021. doi:10.1021/acs.energyfuels.8b00556.
  • Ahmed Qasem, M. A., V. C. O. van Oudenhoven, A. A. Pasha, S. N. Pillai, V. M. Reddy, U. Ahmed, S. A. Razzak, E. M. Al-Mutairi, and A. G. Abdul Jameel. 2022. A machine learning model for predicting threshold sooting index (TSI) of fuels containing alcohols and ethers. Fuel 322:123941. doi:10.1016/J.FUEL.2022.123941.
  • Al Ibrahim, E., and A. Farooq. 2020. Octane prediction from infrared spectroscopic data. Energy & Fuels 34 (1):817–26. doi:10.1021/ACS.ENERGYFUELS.9B02816/ASSET/IMAGES/LARGE/EF9B02816_0008.JPEG.
  • Bourque, G., D. Healy, H. Curran, C. Zinner, D. Kalitan, J. de Vries, C. Aul, and E. Petersen. 2010. Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. J. Eng. Gas Turbines Power 132 (2). doi:10.1115/1.3124665/408886.
  • Burke, S. M., U. Burke, R. Mc Donagh, O. Mathieu, I. Osorio, C. Keesee, A. Morones, E. L. Petersen, W. Wang, T. A. DeVerter, et al., P. P. Dirrenberger, A. Glaude, F. Battin-Leclerc, H. J. Curran. 2015. An experimental and modeling study of propene oxidation. Part 2: ignition delay time and flame speed measurements. Combust. Flame 162 (2):296–314. doi:10.1016/J.COMBUSTFLAME.2014.07.032.
  • Chollet, F. 2018. Keras: The python deep learning library. Astrophys. Source Code Libr ascl–1806.
  • Colket, M. B., and L. J. Spadaccini. 2012. Scramjet fuels autoignition study. J. Propul. Power 17 (2):315–23. doi:10.2514/2.5744.
  • Cui, Y., H. Liu, Q. Wang, Z. Zheng, H. Wang, Z. Yue, Z. Ming, M. Wen, L. Feng, and M. Yao. 2022. Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. Combust. Flame 237:111852. doi:10.1016/J.COMBUSTFLAME.2021.111852.
  • Davidson, D. F., Y. Zhu, J. Shao, and R. K. Hanson. 2017. Ignition delay time correlations for distillate fuels. Fuel 187:26–32. doi:10.1016/J.FUEL.2016.09.047.
  • Electricity in the U.S. - U.S. Energy Information Administration (EIA). n.d. Accessed 2022 23, May. https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php
  • El-Sabor Mohamed, A. A., A. B. Sahu, S. Panigrahy, G. Bourque, and H. Curran. 2021. Ignition delay time correlation of C1–C5 natural gas blends for intermediate and high temperature regime. J. Eng. Gas Turbines Power 143 (12):2021. doi:10.1115/1.4051908/1115042.
  • Eubank, C. S., M. J. Rabinowitz, W. C. Gardiner, and R. E. Zellner. 1981. Shock-initiated ignition of natural gas—Air mixtures. Symp. Combust 18 (1):1767–74. doi:10.1016/S0082-0784(81)80181-6.
  • Global Electricity Review 2022 | Ember|Global Electricity Review 2022 | Ember. n.d. Accessed 2022 23, May. https://ember-climate.org/insights/research/global-electricity-review-2022/
  • Healy, D., D. M. Kalitan, C. J. Aul, E. L. Petersen, G. Bourque, and H. J. Curran. 2010. Oxidation of C1−C5 alkane quinternary natural gas mixtures at high pressures. Energy & Fuels 24 (3):1521–28. doi:10.1021/EF9011005/SUPPL_FILE/EF9011005_SI_001.PDF.
  • Kéromnès, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C. J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, et al. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160:995–1011. doi:10.1016/J.COMBUSTFLAME.2013.01.001.
  • Khaled, F., and A. Farooq. 2019. On the universality of ignition delay times of distillate fuels at high temperatures: A statistical approach. Combust. Flame 210:145–58. doi:10.1016/J.COMBUSTFLAME.2019.08.026.
  • Lamoureux, N., and C. E. Paillard. 2003. Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety. Shock Waves 13:57–68. doi:10.1007/S00193-003-0188-Z.
  • Lifshitz, A., K. Scheller, A. Burcat, and G. B. Skinner. 1971. Shock-tube investigation of ignition in methane-oxygen-argon mixtures. Combust. Flame 16:311–21. doi:10.1016/S0010-2180(71)80102-5.
  • Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran. 2011. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst 33:193–200. doi:10.1016/J.PROCI.2010.05.027.
  • Metcalfe, W. K., S. M. Burke, S. S. Ahmed, and H. J. Curran. 2013. A hierarchical and comparative kinetic modeling study of C1 − C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45:638–75. doi:10.1002/KIN.20802.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12:2825–30.
  • R. CHEMKIN-PRO, 15112, Reaction Design, Inc. 2011. San Diego, CA.
  • Shu, B., S. K. Vallabhuni, J. Zheng, S. Agarwal, and R. X. Fernandes. 2020. Experimental and modeling studies on the correlation between auto-ignition delays and the methane number of Liquefied Natural Gas (LNG) and Liquefied Biogas (LBG). Front. Mech. Eng 6:47. doi:10.3389/fmech.2020.00047.
  • Spadaccini, L. J., and M. B. Colket. 1994. Ignition delay characteristics of methane fuels. Prog. Energy Combust. Sci. 20 (5):431–60. doi:10.1016/0360-1285(94)90011-6.
  • Speight, J. 2007. Liquid fuels from natural gas. Handb. Altern. Fuel Technol 153.
  • Thomson, H., J. J. Corbett, and J. J. Winebrake. 2015. Natural gas as a marine fuel. Energ. Policy 87:153–67. doi:10.1016/j.enpol.2015.08.027.
  • Vallabhuni, S. K., A. D. Lele, V. Patel, A. Lucassen, K. Moshammer, M. AlAbbad, A. Farooq, and R. X. Fernandes. 2018. Autoignition studies of Liquefied Natural Gas (LNG) in a shock tube and a rapid compression machine. Fuel 232:423–30. doi:10.1016/J.FUEL.2018.04.168.
  • Vom Lehn, F., B. Brosius, R. Broda, L. Cai, and H. Pitsch. 2020. Using machine learning with target-specific feature sets for structure-property relationship modeling of octane numbers and octane sensitivity. Fuel 281:118772. doi:10.1016/J.FUEL.2020.118772.
  • Vom Lehn, F., L. Cai, B. Copa Cáceres, and H. Pitsch. 2021. Exploring the fuel structure dependence of laminar burning velocity: A machine learning based group contribution approach. Combust. Flame 232:111525. doi:10.1016/J.COMBUSTFLAME.2021.111525.
  • Zhang, K., C. Banyon, U. Burke, G. Kukkadapu, S. W. Wagnon, M. Mehl, H. J. Curran, C. K. Westbrook, and W. J. Pitz. 2019. An experimental and kinetic modeling study of the oxidation of hexane isomers: Developing consistent reaction rate rules for alkanes. Combust. Flame 206:123–37. doi:10.1016/j.combustflame.2019.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.