213
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Biphenyl, Acetylene and Carbon Dioxide on Benzene Pyrolysis at Intermediate Temperatures

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 3372-3384 | Received 04 May 2023, Accepted 22 Jun 2023, Published online: 25 Jul 2023

References

  • Ayass, W. W., E. F. Nasir, A. Farooq, and S. M. Sarathy. 2016. Mixing-structure relationship in jet-stirred reactors. Chem. Eng. Res. Des. 111:461–64. doi:10.1016/j.cherd.2016.05.016.
  • Böhm, H., and H. Jander. 1999. Pah formation in acetylene–benzene pyrolysis. Phys. Chem. Chem. Phys. 1 (16):3775–81. doi:10.1039/a903306h.
  • Brooks, C. T., S. J. Peacock, and B. G. Reuben. 1979. Pyrolysis of benzene. J. Chem. Soc., Faraday Trans. 1 75 (5):652–62. doi:10.1039/f19797500652.
  • Chemkin-Pro, A. 2019. Ansys. San Diego: Inc.
  • Chen, B. 2019. Gasoline combustion chemistry in a jet stirred reactor. PhD thesis., King Abdullah University of Science and Technology.
  • Comandini, A., T. Malewicki, and K. Brezinsky. 2012. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene. J Phys Chem A 116 (10):2409–34. doi:10.1021/jp207461a.
  • Drakon, A., A. Eremin, M. Korshunova, and E. Mikheyeva. 2021. Pah formation in the pyrolysis of benzene and dimethyl ether mixtures behind shock waves. Combust. Flame 232:111548. doi:10.1016/j.combustflame.2021.111548.
  • Eremin, A., E. Gurentsov, and E. Mikheyeva. 2015. Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene–ethanol mixtures. Combust. Flame 162 (1):207–15. doi:10.1016/j.combustflame.2014.09.015.
  • Frenklach, M., D. W. Clary, W. C. Gardiner Jr, and S. E. Stein. 1985. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. In Symposium (International) on combustion, 887–901. Elsevier. doi:10.1016/S0082-0784(85)80578-6.
  • Frusteri, L., C. Cannilla, K. Barbera, S. Perathoner, G. Centi, and F. Frusteri. 2013. Carbon growth evidences as a result of benzene pyrolysis. Carbon 59:296–307. doi:10.1016/j.carbon.2013.03.022.
  • Hamadi, A., W. Sun, S. Abid, N. Chaumeix, and A. Comandini. 2022. An experimental and kinetic modeling study of benzene pyrolysis with c2−c3 unsaturated hydrocarbons. Combust. Flame 237:111858. doi:10.1016/j.combustflame.2021.111858.
  • Hayashi, S., Y. Hisaeda, Y. Asakuma, H. Aoki, T. Miura, H. Yano, and Y. Sawa. 1999. Simulation of soot aggregates formed by benzene pyrolysis. Combust. Flame 117 (4):851–60. doi:10.1016/S0010-2180(98)00124-2.
  • Hou, K. C., and H. B. Palmer. 1965. The kinetics of thermal decomposition of benzene in a flow system. J Phys Chem 69 (3):863–68. doi:10.1021/j100887a027.
  • Jin, H., B. R. Giri, D. Liu, and A. Farooq. 2021. A high temperature shock tube study of phenyl recombination reaction using laser absorption spectroscopy. Proc. Comb. Inst 38 (1):919–27. doi:10.1016/j.proci.2020.06.164.
  • Kashiwa, K., T. Kitahara, M. Arai, and Y. Kobayashi. 2018. Benzene pyrolysis and pm formation study using a flow reactor. Fuel 230:185–93. doi:10.1016/j.fuel.2018.04.009.
  • Kern, R., H. Singh, M. Esslinger, and P. Winkeler. 1982. Product profiles observed during the pyrolyses of toluene, benzene, butadiene, and acetylene. In Symposium (International) on combustion, 1351–58. Elsevier. doi:10.1016/S0082-0784(82)80311-1.
  • Kern, R., C. Wu, G. Skinner, V. Rao, J. Kiefer, J. Towers, and L. Mizerka. 1985. Collaborative shock tube studies of benzene pyrolysis. In Symposium (International) on combustion, 789–97. Elsevier. doi:10.1016/S0082-0784(85)80569-5.
  • Knorre, V. G., D. Tanke, T. Thienel, and H. G. Wagner. 1996. Soot formation in the pyrolysis of bezene/acetylene and acetylene/hydrogen mixtures at high carbon concentrations. In Symposium (international) on combustion, 2303–10. Elsevier. doi:10.1016/S0082-0784(96)80058-0.
  • Laskin, A., and A. Lifshit. 1996. Thermal decomposition of benene. Single-pulse shock-tube investigation. In Symposium (International) on combustion, 669–75. Elsevier. doi:10.1016/S0082-0784(96)80274-8.
  • Nativel, D., J. Herzler, S. Krzywdziak, S. Peukert, M. Fikri, and C. Schulz. 2022. Shock-tube study of the influence of oxygenated additives on benzene pyrolysis: Measurement of optical densities, soot inception times and comparison with simulations. Combust. Flame 243:111985. doi:10.1016/j.combustflame.2022.111985.
  • Ono, K., M. Yanaka, Y. Saito, H. Aoki, O. Fukuda, T. Aoki, and T. Yamaguchi. 2013. Effect of benzene–acetylene compositions on carbon black configurations produced by benzene pyrolysis. The Chem. Eng. J. 215-216:128–35. doi:10.1016/j.cej.2012.10.085.
  • Ranzi, E., A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. P. Kelley, and C. K. Law. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38 (4):468–501. doi:10.1016/j.pecs.2012.03.004.
  • Saggese, C., A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi. 2013. A wide range kinetic modeling study of pyrolysis and oxidation of benzene. Combust. Flame 160 (7):1168–90. doi:10.1016/j.combustflame.2013.02.013.
  • Shao, C. 2021. Polycyclic aromatic hydrocarbons and soot particle formation in the combustion process. PhD thesis., King Abdullah University of Science and Technology.
  • Shukla, B., and M. Koshi. 2010a. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 12 (10):2427–37. doi:10.1039/b919644g.
  • Shukla, B., and M. Koshi. 2010b. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 12 (10):2427–37. doi:10.1039/b919644g.
  • Shukla, B., and M. Koshi. 2012. A novel route for pah growth in haca based mechanisms. Combust. Flame 159 (12):3589–96. doi:10.1016/j.combustflame.2012.08.007.
  • Singh, H., and R. Kern. 1983. Pyrolysis of benzene behind reflected shock waves. Combust. Flame 54 (1–3):49–59. doi:10.1016/0010-2180(83)90021-4.
  • Sivaramakrishnan, R., K. Brezinsky, H. Vasudevan, and R. S. Tranter. 2006. A shock-tube study of the high-pressure thermal decomposition of benzene. Combust. Sci. Technol 178 (1–3):285–305. doi:10.1080/00102200500292340.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2021a. A comprehensive kinetic study on the speciation from propylene and propyne pyrolysis in a single-pulse shock tube. Combust. Flame 231:231. doi:10.1016/j.combustflame.2021.111485.
  • Sun, W., A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini. 2021b. Probing pah formation chemical kinetics from benzene and toluene pyrolysis in a single-pulse shock tube. Proc. Comb. Inst 38 (1):891–900. doi:10.1016/j.proci.2020.06.077.
  • Tranter, R. S., S. J. Klippenstein, L. B. Harding, B. R. Giri, X. Yang, and J. H. Kiefer. 2010. Experimental and theoretical investigation of the self-reaction of phenyl radicals. J Phys Chem A 114 (32):8240–61. doi:10.1021/jp1031064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.