67
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modelling Outer Ash Deposition Rates in Second Generation Atmospheric Pressure Oxy-Fuel Combustion Systems

ORCID Icon & ORCID Icon
Pages 3440-3455 | Received 04 May 2023, Accepted 22 Jun 2023, Published online: 23 Jul 2023

References

  • ANSYS, Inc. 2018. ANSYS Fluent Theory Guide. Release 19.1, Online manual resource. Canonsburg, PA: ANSYS Inc.
  • Gopan, A., P. Verma, Z. Yang, and R. L. Axelbaum. 2020. Quantitative analysis of the impact of flue gas recirculation on the efficiency of oxy-coal power plants. Int. J. Greenh. Gas Con 95:102936. doi:10.1016/j.ijggc.2019.102936.
  • Israel, R., and D. E. Rosner. 1982. Use of a generalized stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow. Aerosol Sci. Technol. 2 (1):45–51. doi:10.1080/02786828308958612.
  • Kleinhans, U., C. Wieland, S. Babat, G. Scheffknecht, and H. Spliethoff. 2017. Ash particle sticking and rebound behavior: A mechanistic explanation and modeling approach. P. Combust Inst 36 (2):2341–50. doi:10.1016/j.proci.2016.05.015.
  • Krishnamoorthy, G. 2013. A new weighted-sum-of-gray-gases model for oxy-combustion scenarios. Int. J. Energy Res 37 (14):1752–63. doi:10.1002/er.2988.
  • Krishnamoorthy, G. 2022. Aerodynamic influences on the outer ash deposition rates during oxy-coal combustion. Cleaner Chem. Eng. 3:100057. doi:10.1016/j.clce.2022.100057.
  • Krishnamoorthy, G. 2023a. Modeling ash deposition and shedding during oxy‑combustion of coal/rice husk blends at 70% inlet O2. Int. J. Coal Sci. Technol 10 (1). doi:10.1007/s40789-023-00583-8.
  • Krishnamoorthy, G. 2023b. Particle size distribution and its impacts on ash deposition and radiative transfer during oxy-combustion of rice husk–natural gas. Methane 2 (2):218–40. doi:10.3390/methane2020015.
  • Krishnamoorthy, G., and C. Wolf. 2015. Assessing the role of particles in radiative heat transfer during oxy-combustion of coal and biomass blends. J. Combust 2015:1–15. doi:10.1155/2015/793683.
  • Ochs, T., D. Oryshchyn, R. Woodside, C. Summers, B. Patrick, D. Gross, M. Schoenfield, T. Weber, and D. O’Brien. 2009. Results of initial operation of the jupiter oxygen corporation oxy-fuel 15 MWth burner test facility. Enrgy. Proced. 1 (1):511–18. doi:10.1016/j.egypro.2009.01.068.
  • Senior, C. L., and S. Srinivasachar. 1995. Viscosity of ash particles in combustion systems for prediction of particle sticking. Energy. Fuels 9 (2):277–83. doi:10.1021/ef00050a010.
  • Wang, Y. 2019. Ash aerosol and ash deposit formation during high temperature oxy-combustion of various solid fuels. PhD diss., University of Utah.
  • Wang, Y., X. Li, and J. O. Wendt. 2018. Ash Aerosol and deposition formation mechanisms during air/Oxy-combustion of rice husks in a 100 kW combustor. Energy. Fuels 32 (4):4391–98. doi:10.1021/acs.energyfuels.7b03127.
  • Wang, Y., X. Li, and J. O. Wendt. 2019. On ash deposition rates from air and oxy-combustion of pulverized coal, petroleum coke, and biomass. Energy. Fuels 33 (7):5849–58. doi:10.1021/acs.energyfuels.8b04185.
  • Weber, R., N. Schaffel-Mancini, M. Mancini, and T. Kupka. 2013. Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using RANS-based computational fluid dynamics. Fuel 108:586–96. doi:10.1016/j.fuel.2012.11.006.
  • Wu, J., Y. Wang, J. Han, X. Li, D. Yu, M. Xu, and J. O. Wendt. 2019. Ash formation and deposition in oxy-fuel combustion of rice husk, coal, and their blend with 70% Inlet O2. Energy. Fuels 34 (1):890–99. doi:10.1021/acs.energyfuels.9b03129.
  • Zhan, Z., A. R. Fry, and J. O. Wendt. 2016. Relationship between submicron ash aerosol characteristics and ash deposit compositions and formation rates during air-and oxy-coal combustion. Fuel 181:1214–23. doi:10.1016/j.fuel.2016.02.074.
  • Zhang, J., K. E. Kelly, E. G. Eddings, and J. O. Wendt. 2011. CO2 effects on near field aerodynamic phenomena in 40 kW, co-axial, oxy-coal, turbulent diffusion flames. Int. J. Greenh. Gas Con 5:S47–S57. doi:10.1016/j.ijggc.2011.05.022.
  • Zhou, M., 2019. Large-Eddy Simulation of Near-Wall Multiphase Flow in Combustion Systems. University of Utah, PhD Dissertation

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.