109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Priori Validation of a Multidimensional Turbulent Premixed Combustion Model for High-Pressure Bunsen Flames

ORCID Icon, & ORCID Icon
Pages 3262-3280 | Received 04 May 2023, Accepted 01 Jul 2023, Published online: 01 Aug 2023

References

  • Akkerman, V., and V. Bychkov. 2003. Turbulent flame and the darrieus–landau instability in a three-dimensional flow. Combust. Theory Modelling 7 (4):767. doi:10.1088/1364-7830/7/4/008.
  • Attili, A., R. Lamioni, L. Berger, K. Kleinheinz, P. E. Lapenna, H. Pitsch, and F. Creta. 2021. The effect of pressure on the hydrodynamic stability limit of premixed flames. Proc. Combust. Inst. 38 (2):1973–81. doi:10.1016/j.proci.2020.06.091.
  • Chakraborty, N., D. Alwazzan, M. Klein, and R. S. Cant. 2019. On the validity of damköhler’s first hypothesis in turbulent bunsen burner flames: A computational analysis. Proc. Combust. Inst. 37 (2):2231–39. doi:10.1016/j.proci.2018.07.042.
  • Chakraborty, N., and R. Cant. 2009. Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32 (1):1445–53. doi:10.1016/j.proci.2008.06.028.
  • Colin, O., F. Ducros, D. Veynante, and T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7):1843–63. doi:10.1063/1.870436.
  • Dahoe, A., and L. De Goey. 2003. On the determination of the laminar burning velocity from closed vessel gas explosions. J. Loss Prev. Process Ind. 16 (6):457–78. doi:10.1016/S0950-4230(03)00073-1.
  • Driscoll, J. F. 2008. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energ. Combust. 34 (1):91–134. doi:10.1016/j.pecs.2007.04.002.
  • Fiorina, B., R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel, and D. Veynante. 2010. A filtered tabulated chemistry model for les of premixed combustion. Combust. Flame 157 (3):465–75. doi:10.1016/j.combustflame.2009.09.015.
  • Fureby, C. 2005. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30 (1):593–601. doi:10.1016/j.proci.2004.08.068.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and trans- port processes. https://www.cantera.org.
  • Hansinger, M., M. Pfitzner, and M. Klein. 2020. Statistical analysis and verification of a new premixed combustion model with DNS data. Combust. Sci. Technol 192 (11):2093–114. doi:10.1080/00102202.2020.1781833.
  • Jenkins, K., and R. Cant. 1999. DNS of turbulent flame kernels. In Proceedings of 2nd AFOSR Conference on DNS and LES, ed. C. Liu, L. Sakell, and T. Beautner, 192–202. Dordrecht: Kluwer Academic Publishers.
  • Keil, F., M. Chakraborty, and N. Klein. 2020. Subgrid reaction progress variable variance closure in turbulent premixed flames. Flow Turbul. Combust 105 (3):869–88. doi:10.1007/s10494-020-00161-x.
  • Keppeler, R., E. Tangermann, U. Allaudin, and M. Pfitzner. 2014. LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92 (3):767–802. doi:10.1007/s10494-013-9525-1.
  • Klein, M., and N. Chakraborty. 2019. A-priori analysis of an alternative wrinkling factor definition for flame surface density based large eddy simulation modelling of turbulent premixed combustion. Combust. Sci. Technol 191 (1):95–108. doi:10.1080/00102202.2018.1452394.
  • Klein, M., H. Nachtigal, M. Hansinger, M. Pfitzner, and N. Chakraborty. 2018. Flame curvature distribution in high pressure turbulent bunsen premixed flames. Flow Turbul. Combust. 101 (4):1173–87. doi:10.1007/s10494-018-9951-1.
  • Kobayashi, H., K. Seyama, H. Hagiwara, and Y. Ogami. 2005. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30 (1):827–34. doi:10.1016/j.proci.2004.08.098.
  • Lipatnikov, A., and J. Chomiak. 2002. Turbulent flame speed and thickness: Phe- nomenology, evaluation, and application in multi-dimensional simulations. Prog. Energ. Combust. 28 (1):1–74. doi:10.1016/S0360-1285(01)00007-7.
  • Luca, S., A. Attili, E. L. Schiavo, F. Creta, and F. Bisetti. 2019. On the statistics of flame stretch in turbulent premixed jet flames in the thin reaction zone regime at varying reynolds number. Proc. Combust. Inst. 37 (2):2451–59. doi:10.1016/j.proci.2018.06.194.
  • Ma, T., O. Stein, N. Chakraborty, and A. Kempf. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theory Modelling 17 (3):431–82. doi:10.1080/13647830.2013.779388.
  • Moureau, V., P. Domingo, and L. Vervisch. 2011. From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling. Combust. Flame 158 (7):1340–57. doi:10.1016/j.combustflame.2010.12.004.
  • Nilsson, T., H. Carlsson, R. Yu, and X. S. Bai. 2018. Structures of turbulent pre- mixed flames in the high Karlovitz number regime–DNS analysis. Fuel 216:627–38. doi:10.1016/j.fuel.2017.12.046.
  • Patyal, A., and M. Matalon. 2022. Isolating effects of darrieus–landau instability on the morphology and propagation of turbulent premixed flames. J. Fluid Mech 940:A2. doi:10.1017/jfm.2022.180.
  • Pfitzner, M. 2021. A new analytic pdf for simulations of premixed turbulent com- bustion. Flow Turbul. Combust. 106 (4):1213–39. doi:10.1007/s10494-020-00137-x.
  • Pfitzner, M., and M. Klein. 2021. A near-exact analytic solution of progress variable and pdf for single-step arrhenius chemistry. Combust. Flame 226:380–95. doi:10.1016/j.combustflame.2020.12.007.
  • Pfitzner, M., J. Shin, and M. Klein. 2022. A multidimensional combustion model for oblique, wrinkled premixed flames. Combust. Flame 241:112121. doi:10.1016/j.combustflame.2022.112121.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. 2nd ed. Edwards. doi:10.1002/0470091355.ecm067.
  • Proch, F., P. Domingo, L. Vervisch, and A. M. Kempf. 2017. Flame resolved sim- ulation of a turbulent premixed bluff-body burner experiment. part t ii: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling. Combust. Flame 180:340–50. doi:10.1016/j.combustflame.2017.02.012.
  • Rasool, R., N. Chakraborty, and M. Klein. 2021. Effect of non-ambient pressure conditions and lewis number variation on direct numerical simulation of turbulent bunsen flames at low turbulence intensity. Combust. Flame 231:111500. doi:10.1016/j.combustflame.2021.111500.
  • Rieth, M., A. Gruber, and J. H. Chen. 2023. The effect of pressure on lean premixed hydrogen-air flames. Combust. Flame 250:112514. doi:10.1016/j.combustflame.2022.112514.
  • Turns, S. R. 2011. An introduction to combustion. New York, NY, USA: McGraw-Hill Companies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.