192
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combination Effect of in-Situ Combustion and Exhaust Gases Recirculation on 1D Combustion Tube: Numerical Approach

, &
Pages 3296-3309 | Received 04 May 2023, Accepted 17 Jul 2023, Published online: 01 Aug 2023

References

  • Ado, M. R. 2020. A detailed approach to up-scaling of the Toe-to-Heel Air Injection (THAI) in-situ combustion enhanced heavy oil recovery process. J. Petrol. Sci. Eng. 106740:187. doi:10.1016/j.petrol.2019.106740.
  • Aziz, K., and A. Settari. 1979. Petroleum Reservoir Simulation. London: Applied Science Publishers.
  • Babushok, V. I., and A. N. Dakdancha. 1993. Global kinetic parameters for high-temperature gas-phase reactions. Combust. Explos. Shock Waves 464 (4):489–29(4. doi:10.1007/BF00782974.
  • Canas, C., S. Gittins, S. Gupta, A. Sood, and X. Wu. 2016. Hydrocarbon recovery facilitated by in situ combustion. U.S. Patent 9,284,827, issued March 15, 2016.
  • Chen, Y., Z. Liu, M. Wang, H. Yin, H. Donglin, H. Gong, and X. Zhang. 2022. New insights into the non-isothermal oxidation of tight oil: Experimental study and theoretical prediction. Fuel 326 (2022):125011. doi:10.1016/j.fuel.2022.125011.
  • Chen, Y., P. Wanfen, X. Liu, L. Yibo, X. Gong, J. Hui, and C. Guo. 2019. Specific kinetic triplet estimation of Tahe heavy oil oxidation reaction based on non-isothermal kinetic results. Fuel 242:545–52. doi:10.1016/j.fuel.2019.01.097.
  • Chen, Y.-F., P. Wan-Fen, X.-L. Liu, L. Yi-Bo, M. A. Varfolomeev, and J. Hui. 2019. A preliminary feasibility analysis of in situ combustion in a deep fractured-cave carbonate heavy oil reservoir. J. Petrol. Sci. Eng. 174:446–55. doi:10.1016/j.petrol.2018.11.054.
  • CMG, S. 2017. Advanced Processes and Thermal Reservoir Simulator, User’s Guide. Calgary, Canada: Computer Modelling Group Ltd.
  • Coates, R., S. Lorimer, and J. Ivory. 1995. Experimental and numerical simulations of a novel top down in-situ combustion process. SPE International Heavy Oil Symposium, Society of Petroleum Engineers, Calgary, Alberta, Canada, June 19–21, pp. 487–98.
  • Guntermann, K., H. Gudenau, and M. Mohtadi. 1982. Mathematical modeling of the in situ coal gasification process. Proceedings of the Eighth Underground Coal Conversion Symposium, Sandia National Laboratories, Keystone Lodge, Colorado, US, August 15–19, 297:306.
  • Hajdo, L. E., R. J. Hallam, and L. D. L. Vorndran. 1985. Hydrogen generation during In-Situ combustion. Paper presented at the SPE California Regional Meeting, Bakersfield, California,March 27–29. doi:10.2118/13661-MS.
  • Hamdy, M., M. Mahmoud, O. Aladeb, and E. M. Mokheimer. 2020. Numerical study of enhanced oil recovery using in situ Oxy-Combustion in a porous combustion tube. J. Energy Res. Technol 122305 (12):12. doi:10.1115/1.4047308.
  • Hart, P. R. 2017. Hydrocarbon mobility and recovery through in-situ combustion with the addition of Ammonia. U.S. Patent 9,574,429, issued February 21, 2017.
  • Kapadia, P. R., M. S. Kallos, and I. D. Gates. 2011. Potential for hydrogen generation from in situ combustion of athabasca bitumen. Fuel. 90 (6):2254–65. 2254:2265. doi:10.1016/j.fuel.2011.02.038.
  • Kapadia, P. R., M. S. Kallos, and I. D. Gates. 2013. A new kinetic model for pyrolysis of athabasca bitumen. Can. J. Chem Eng. 91 (5):889–901. 889:901. doi:10.1002/cjce.21732.
  • Kapadia, P. R., J. (. Wang, M. S. Kallos, and I. D. Gates. 2013. Practical process design for in situ gasification of Bitumen. Appl. Energ. 107:281–96. doi:10.1016/j.apenergy.2013.02.035.
  • Leaute, R. P. 1994. Recovery and upgrading of hydrocarbon utilizing in situ combustion and horizontal wells. U.S. Patent 5,339,897, issued August 23, 1994.
  • Li, Y., Z. Wang, Z. Hu, B. Xu, Y. Li, W. Pu, and J. Zhao. 2021. A review of in situ upgrading technology for heavy crude oil. Petroleum 7 (2):117–22. doi:10.1016/j.petlm.2020.09.004.
  • Mahinpey, N., A. Ambalae, and K. Asghari. 2007. In situ combustion in enhanced oil recovery (EOR): A review. Chem. Eng. Commun 194 (8):995–1021. doi:10.1080/00986440701242808.
  • Rabiu Ado, M. 2017. Numerical simulation of heavy oil and bitumen recovery and upgrading techniques. PhD diss., University of Nottingham, Nottingham, UK.
  • Schleicher, A. R. 1965. Method of reversing in situ combustion frontal movement. U.S. Patent 3,172,467, issued March 9, 1965.
  • Shu, W. R. 1983. In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant. U.S. Patent 4,410,042, issued October 18, 1983.
  • Yang, X., and I. D. Gates. 2009. Combustion kinetics of athabasca bitumen from 1D combustion tube experiments. Nat. Resour. Res. 18 (3):193–211. doi:10.1007/s11053-009-9095-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.