816
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Reactive Molecular Dynamics Investigation of Nanoparticle Interactions in Hydrocarbon Combustion

, ORCID Icon & ORCID Icon
Pages 3281-3295 | Received 09 May 2023, Accepted 20 May 2023, Published online: 22 Aug 2023

References

  • Aktulga, H. M., J. C. Fogarty, S. A. Pandit, and A. Y. Grama. 2012. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel. Comput. 38 (4– 5):245–59. doi:10.1016/j.parco.2011.08.005.
  • Allen, C., G. Mittal, C.-J. Sung, E. Toulson, and T. Lee. 2011. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst. 33 (2):3367–74. doi:10.1016/j.proci.2010.06.007.
  • Basu, S., and A. Miglani. 2016. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. Int. J. Heat Mass Tran. 96:482–503. doi:10.1016/j.ijheatmasstransfer.2016.01.053.
  • Bergthorson, J. M. 2018. Recyclable metal fuels for clean and compact zero-carbon power. Prog. Energ. Combust. 68:169–96. doi:10.1016/j.pecs.2018.05.001.
  • Castro-Marcano, F., and A. C. T. van Duin. 2013. Comparison of thermal and catalytic cracking of 1-heptene from reaxff reactive molecular dynamics simulations. Combust. Flame 160 (4):766–75. doi:10.1016/j.combustflame.2012.12.007.
  • Chakraborty, P., and M. R. Zachariah. 2014. Do nanoenergetic particles remain nano-sized during combustion? Combust. Flame 161 (5):1408–16. doi:10.1016/j.combustflame.2013.10.017.
  • Chang, X., Q. Chu, and D. Chen. 2020. Shock-induced anisotropic metal combustion. J. Phys. Chem. C 124 (24):13206–14. doi:10.1021/acs.jpcc.0c02876.
  • Chen, J., and T. J. Martínez. 2007. Qtpie: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chem. Phys. Lett. 438 (4):315–20. doi:10.1016/j.cplett.2007.02.065.
  • Chenoweth, K., A. C. T. van Duin, and W. A. Goddard. 2008. Reaxff reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys. Chem. A 112 (5):1040–53. doi:10.1021/jp709896w.
  • Chu, Q., B. Shi, L. Liao, K. H. Luo, N. Wang, and C. Huang. 2018. Ignition and oxidation of core-shell al/al2o3 nanoparticles in an oxygen atmosphere: Insights from molecular dynamics simulation. J. Phys. Chem. C 122 (51):29620–27. doi:10.1021/acs.jpcc.8b09858.
  • Fedorov, A. V., A. V. Shulgin, and S. A. Lavruk. 2016. Study of iron nanoparticle melting. AIP Conf. Proc. 1770 (1):030099.
  • Gan, Y., and L. Qiao. 2011. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust. Flame 158 (2):354–68. doi:10.1016/j.combustflame.2010.09.005.
  • Henz, B. J., T. Hawa, and M. R. Zachariah. 2010. On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: Ion mobility versus Fickian diffusion. J. Appl. Phys. 107 (2):024901. doi:10.1063/1.3247579.
  • Hong, S., and A. C. T. van Duin. 2015. Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the reaxff reactive force field. J. Phys. Chem. C 119 (31):17876–86. doi:10.1021/acs.jpcc.5b04650.
  • Hong, S., and A. C. T. van Duin. 2016. Atomistic-scale analysis of carbon coating and its effect on the oxidation of aluminum nanoparticles by reaxff-molecular dynamics simulations. J. Phys. Chem. C 120 (17):9464–74. doi:10.1021/acs.jpcc.6b00786.
  • Islam, M. M., C. Zou, A. C. T. V. Duin, and S. Raman. 2015. Interactions of hydrogen with the iron and iron carbide interfaces: A reaxff molecular dynamics study. Phys. Chem. Chem. Phys 18 (2):761–71. doi:10.1039/C5CP06108C.
  • Javed, I., S. W. Baek, and K. Waheed. 2015. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures. Combust. Flame 162 (1):191–206. doi:10.1016/j.combustflame.2014.07.015.
  • Khond, V. W., and V. M. Kriplani. 2016. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary ci engine: A comprehensive review. Renew. Sust. Energ. Rev. 59:1338–48. doi:10.1016/j.rser.2016.01.051.
  • Kritikos, E., and A. Giusti. 2020. Reactive molecular dynamics investigation of toluene oxidation under electrostatic fields: Effect of the modeling of local charge distribution. J. Phys. Chem. A 124 (51):10705–16. doi:10.1021/acs.jpca.0c08040.
  • Kritikos, E., A. Lele, A. C. van Duin, and A. Giusti. 2022. A reactive molecular dynamics study of the effects of an electric field on n-dodecane combustion. Combust. Flame 244:112238. doi:10.1016/j.combustflame.2022.112238.
  • Levitas, V. I., M. L. Pantoya, and K. W. Watson. 2008. Melt-dispersion mechanism for fast reaction of aluminum particles: Extension for micron scale particles and fluorination. Appl. Phys. Lett. 92 (20). doi:10.1063/1.2936855.
  • Li, G., L. Niu, W. Hao, Y. Liu, and C. Zhang. 2020. Atomistic insight into the microexplosion-accelerated oxidation process of molten aluminum nanoparticles. Combust. Flame 214:238–50. doi:10.1016/j.combustflame.2019.12.027.
  • Liu, J., M. Wang, and P. Liu. 2018. Molecular dynamical simulations of melting al nanoparticles using a reaxff reactive force field. Mater. Res. Express 5 (6):065011. doi:10.1088/2053-1591/aac653.
  • Lucas, M., S. J. Brotton, A. Min, C. Woodruff, M. L. Pantoya, and R. I. Kaiser. 2020. Effects of size and prestressing of aluminum particles on the oxidation of levitated exo-tetrahydrodicyclopentadiene droplets. J. Phys. Chem. A 124 (8):1489–507. doi:10.1021/acs.jpca.9b10697.
  • Mathieu, D. 2007. Split charge equilibration method with correct dissociation limits. J. Chem. Phys. 127 (22):224103. doi:10.1063/1.2803060.
  • Nakashima, P. 2019. The crystallography of aluminum and its alloys. In The encyclopedia of aluminum and its alloys, Taylor & Francis: Boca Raton FL USA. doi:10.1201/9781351045636-140000245.
  • Overdeep, K. R., C. J. Ridge, Y. Xin, T. N. Jensen, S. L. Anderson, and C. M. Lindsay. 2019. Oxidation of aluminum particles from 1 to 10 nm in diameter: The transition from clusters to nanoparticles. J. Phys. Chem. C 123 (38):23721–31. doi:10.1021/acs.jpcc.9b05564.
  • Pandey, K., K. Chattopadhyay, and S. Basu. 2017. Combustion dynamics of low vapour pressure nanofuel droplets. Phys. Fluids 29 (7):074102. doi:10.1063/1.4991752.
  • Pepperhoff, W., and M. Acet. 2001. The structure of iron, constitution and magnetism of iron and its alloys. Berlin Heidelberg, Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-04345-5.
  • Plimpton, S. 1995. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1):1–19.https://www.lammps.org
  • Rappe, A. K., and W. A. Goddard. 1991. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95 (8):3358–63. doi:10.1021/j100161a070.
  • Sanderson, R. T. 1951. An interpretation of bond lengths and a classification of bonds. Science 114 (2973):670–72. doi:10.1126/science.114.2973.670.
  • Senftle, T. P., S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, et al. 2016. The reaxff reactive force-field: Development, applications and future directions. npj Comput. Mater 2 (1):15011. doi:10.1038/npjcompumats.2015.11.
  • Singh, N., G. J. Jenkins, R. Asadi, and S. H. Doak. 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1 (1):5358. doi:10.3402/nano.v1i0.5358.
  • Smirnov, V. V., S. A. Kostritsa, V. D. Kobtsev, N. S. Titova, and A. M. Starik. 2015. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combust. Flame 162 (10):3554–61. doi:10.1016/j.combustflame.2015.06.011.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (review). Combust. Explos. Shock Waves 51 (2):173–96. doi:10.1134/S0010508215020045.
  • van Duin, A. C. T., S. Dasgupta, F. Lorant, and W. A. Goddard. 2001. Reaxff: A reactive force field for hydrocarbons. J. Phys. Chem. A 105 (41):9396–409. doi:10.1021/jp004368u.
  • Verstraelen, T., P. W. Ayers, V. Van Speybroeck, and M. Waroquier. 2013. ACKS2: Atomcondensed Kohn-Sham DFT approximated to second order. J. Chem. Phys. 138 (7). doi:10.1063/1.4791569.
  • Wang, W., R. Clark, A. Nakano, R. K. Kalia, and P. Vashishta. 2009. Fast reaction mechanism of a core(Al)-shell (Al2O3) nanoparticle in oxygen. Appl. Phys. Lett. 95 (26):261901. doi:10.1063/1.3268436.
  • Wu, B., F. Wu, P. Wang, A. He, and H. Wu. 2021. Ignition and combustion of hydrocarbon fuels enhanced by aluminum nanoparticle additives: Insights from reactive molecular dynamics simulations. J. Phys. Chem. C 125 (21):11359–68. doi:10.1021/acs.jpcc.1c01435.
  • Zhao, Y., Z. Mei, F.-Q. Zhao, S.-Y. Xu, and X.-H. Ju. 2021. Insight into the combustion mechanism of nitroglycerin/nano-aluminum composite materials. Struct. Chem. 32 (1):387. doi:10.1007/s11224-020-01640-7.
  • Zhao, Y., J.-S. Zhao, F.-Q. Zhao, S.-Y. Xu, and X.-H. Ju. 2020. Revealing the decomposition behavior of hexanitrostilbene and aluminum nanoparticles composites: A reactive molecular dynamics simulation. Acta Astronaut. 177:320–31. doi:10.1016/j.actaastro.2020.07.042.
  • Zhu, B., W. Chen, Y. Sun, B. Dai, and J. Liu. 2021. Ignition and combustion characteristics of al/n-heptane nanoslurry fuel droplets via a laser-ignition model. J. Energy Eng. 147 (6):04021057. doi:10.1061/(ASCE)EY.1943-7897.0000804.