168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Radiation Model on Soot Modeling in Laminar Coflow Diffusion Flames at Elevated Pressure

&
Pages 3494-3512 | Received 04 May 2023, Accepted 21 May 2023, Published online: 13 Aug 2023

References

  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame 121 (1):122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Chang, H., and T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R Soc. Lond. A Math. Phys. Sci. 430 (1880):577–91.
  • Consalvi, J. L., F. Andre, F. R. Coelho, F. H. R. Franca, F. Nmira, M. Galtier, V. Solovjov, and B. W. Webb. 2020. Assessment of engineering gas radiative property models in high pressure turbulent jet diffusion flames. J. Quant. Spectrosc. Radiat. Transf. 253:107169. doi:10.1016/j.jqsrt.2020.107169.
  • Denison, M. K., and B. W. Webb. 1995. The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. J. Heat Transfer 117 (3):788–92. doi:10.1115/1.2822652.
  • Fraga, G. C., L. Zannoni, F. R. Centeno, and F. H. R. França. 2019. Evaluation of different gray gas formulations against line-by-line calculations in two- and three-dimensional configurations for participating media composed by CO2, H2O and soot. Fire Saf. J. 108:102843. doi:10.1016/j.firesaf.2019.102843.
  • Frenklach, M., and H. Wang. 1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23 (1):1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2009. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Pasadena, CA: Caltech.
  • Guo, J., X. Li, X. Huang, Z. Liu, and C. Zheng. 2015. A full spectrum k-distribution based weighted-sum-of-gray-gases model for oxy-fuel combustion. Int. J. Heat Mass Tran. 90:218–26. doi:10.1016/j.ijheatmasstransfer.2015.06.052.
  • Guo, J., P. Liu, E. Quadarella, K. Yalamanchi, I. Alsheikh, C. Chu, F. Liu, S. M. Sarathy, W. L. Roberts, and H. G. Im. 2022. Assessment of physical soot inception model in normal and inverse laminar diffusion flames. Combust. Flame 246:112420. doi:10.1016/j.combustflame.2022.112420.
  • Guo, J., L. Shen, X. He, Z. Liu, and H. G. Im. 2021. Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames. Int. J. Heat Mass. Transf 181:121907. doi:10.1016/j.ijheatmasstransfer.2021.121907.
  • Guo, J., L. Shen, J. Wan, P. Li, and Z. Liu. 2021. A full spectrum k-distribution-based weighted-sum-of-gray-gases model for pressurized oxy-fuel combustion. Int. J. Energy Res 45 (2):3410–20. doi:10.1002/er.6010.
  • Guo, J., Y. Tang, V. Raman, and H. G. Im. 2021. Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames. Fuel 292:120176. doi:10.1016/j.fuel.2021.120176.
  • Hassanaly, M., H. Koo, C. F. Lietz, S. T. Chong, and V. Raman. 2018. A minimally-dissipative low-mach number solver for complex reacting flows in OpenFOAM. Comput. Fluids 162:11–25. doi:10.1016/j.compfluid.2017.11.020.
  • Jin, H., J. Guo, T. Li, Z. Zhou, H. G. Im, and A. Farooq. 2021. Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel 289:119931. doi:10.1016/j.fuel.2020.119931.
  • Johansson, R., B. Leckner, K. Andersson, and F. Johnsson. 2011. Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust. Flame 158 (5):893–901. doi:10.1016/j.combustflame.2011.02.001.
  • Kailasanathan, R. K. A., E. K. Book, T. Fang, and W. L. Roberts. 2013. Hydrocarbon species concentrations in nitrogen diluted ethylene-air laminar jet diffusion flames at elevated pressures. Proc. Combust. Inst. 34 (1):1035–43. doi:10.1016/j.proci.2012.06.148.
  • Kangwanpongpan, T., F. H. R. França, R. Corrêa da Silva, P. S. Schneider, and H. J. Krautz. 2012. New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database. Int. J. Heat Mass Tran. 55 (25–26):7419–33. doi:10.1016/j.ijheatmasstransfer.2012.07.032.
  • Liu, F., J. L. Consalvi, P. J. Coelho, F. Andre, M. Gu, V. Solovjov, and B. W. Webb. 2020. The impact of radiative heat transfer in combustion processes and its modeling – with a focus on turbulent flames. Fuel 281:118555. doi:10.1016/j.fuel.2020.118555.
  • Liu, F., H. Guo, and G. J. Smallwood. 2004. Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame. Combust. Flame 138 (1–2):136–54. doi:10.1016/j.combustflame.2004.04.007.
  • Modest, M. F. 2003. Narrow-band and full-spectrum k-distributions for radiative heat transfer—correlated-k vs. scaling approximation. J. Quant. Spectrosc. Radiat. Transf. 76 (1):69–83. doi:10.1016/S0022-4073(02)00046-8.
  • Modest, M. F. Radiative heat transfer. 3rd ed. Academic Press: New York. 2013. doi:10.1016/B978-0-12-386944-9.50023-6.
  • Modest, M. F., and D. C. Haworth. 2016. Radiative heat transfer in high-pressure combustion systems. Springer International Publishing 137–48. doi:10.1007/978-3-319-27291-7_7.
  • Mueller, M. E., G. Blanquart, and H. Pitsch. 2009. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156 (6):1143–55. doi:10.1016/j.combustflame.2009.01.025.
  • Neoh, K. G., J. B. Howard, and A. F. Sarofim. 1985. Effect of oxidation on the physical structure of soot. Symp. (Int.) Combust. 20 (1):951–57. doi:10.1016/S0082-0784(85)80584-1.
  • Pal, G., A. Gupta, M. F. Modest, and D. C. Haworth. 2015. Comparison of accuracy and computational expense of radiation models in simulation of non-premixed turbulent jet flames. Combust. Flame 162 (6):2487–95. doi:10.1016/j.combustflame.2015.02.017.
  • Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson. 2010. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111 (15):2139–50. doi:10.1016/j.jqsrt.2010.05.001.
  • Selvaraj, P., P. G. Arias, B. J. Lee, H. G. Im, Y. Wang, Y. Gao, S. Park, S. M. Sarathy, T. Lu, and S. H. Chung. 2016. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combust. Flame 163:427–36. doi:10.1016/j.combustflame.2015.10.017.
  • Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transfer 104 (4):602–08. doi:10.1115/1.3245174.
  • Solovjov, V. P., F. Andre, D. Lemonnier, and B. W. Webb. 2017. The rank correlated SLW model of gas radiation in non-uniform media. J. Quant. Spectrosc. Radiat. Transf. 197:26–44. doi:10.1016/j.jqsrt.2017.01.034.
  • Solovjov, V. P., B. W. Webb, and F. Andre. 2018. The rank correlated FSK model for prediction of gas radiation in non-uniform media, and its relationship to the rank correlated SLW model. J. Quant. Spectrosc. Radiat. Transf. 214:120–32. doi:10.1016/j.jqsrt.2018.04.026.
  • Steinmetz, S. A., T. Fang, and W. L. Roberts. 2016. Soot particle size measurements in ethylene diffusion flames at elevated pressures. Combust. Flame 169:85–93. doi:10.1016/j.combustflame.2016.02.034.
  • Taylor, P. B., and P. J. Foster. 1975. Some gray gas weighting coefficients for CO2-H2O-soot mixtures. Int. J. Heat Mass Tran. 18 (11):1331–32. doi:10.1016/0017-9310(75)90244-6.
  • Wang, C., B. He, M. F. Modest, and T. Ren. 2018. Efficient full-spectrum correlated-k-distribution look-up table. J. Quant. Spectrosc. Radiat. Transf. 219:108–16. doi:10.1016/j.jqsrt.2018.04.002.
  • Yin, C., L. C. R. Johansen, L. A. Rosendahl, and S. K. Kær. 2010. New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxyfuel combustion: Derivation, validation, and implementation. Energy & Fuels 24 (12):6275–82. doi:10.1021/ef101211p.
  • Zhou, Y., C. Wang, T. Ren, and C. Zhao. 2021. A machine learning based full-spectrum correlated k-distribution model for nonhomogeneous gas-soot mixtures. J. Quant. Spectrosc. Radiat. Transf. 268:107628. doi:10.1016/j.jqsrt.2021.107628.
  • Zhu, X. L., J. P. Gore, A. N. Karpetis, and R. S. Barlow. 2002. The effects of self-absorption of radiation on an opposed flow partially premixed flame. Combust. Flame 129 (3):342–45. doi:10.1016/S0010-2180(02)00341-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.