1,141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CFD Simulation of Biomass Combustion in an Industrial Circulating Fluidized Bed Furnace

, , , , , & ORCID Icon show all
Pages 3310-3340 | Received 01 May 2023, Accepted 20 May 2023, Published online: 23 Sep 2023

References

  • Alobaid, F., N. Almohammed, M. Massoudi Farid, J. May, P. Rößger, A. Richter, and B. Epple. 2021. Progress in CFD simulations of fluidized beds for chemical and energy process engineering. Prog. Energ. Combust. 91:100930. doi:10.1016/j.pecs.2021.100930.
  • Anderson, T. B., and R. Jackson. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fund. 6 (4):527–39. doi:10.1021/i160024a007.
  • Andrews, M. J., and P. J. O’Rourke. 1996. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiphas. Flow. 22 (2):379–402. issn: 0301-9322. doi:10.1016/0301-9322(95)00072-0.
  • Bassilakis, R., R. M. Carangelo, and M. A. Wojtowicz. 2001. TG-FTIR analysis of biomass pyrolysis. Fuel 80 (12):1765–86. doi:10.1016/S0016-2361(01)00061-8.
  • Blaszczuk, A., A. Zylka, and J. Leszczynski. 2016. Simulation of mass balance behavior in a large-scale circulating fluidized bed reactor. Particuology. 25:51–58. doi:10.1016/j.partic.2015.04.003.
  • Brink, A., P. Kilpinen, and M. Hupa. 2001. A simplified kinetic rate ex- pression for describing the oxidation of volatile fuel-N in biomass combustion. Energy & Fuels 15 (5):1094–99. doi:10.1021/ef0002748.
  • Cai, L., Z. Xu, X. Wang, H. Bai, L. Han, and Y. Zhou. 2022. Numerical simulation and optimization of semi-dry flue gas desulfurization in a CFB based on the two-film theory using response surface methodology. Pow. Technol. 401:117268. doi:10.1016/j.powtec.2022.117268.
  • Cai, R., H. Zhang, M. Zhang, H. Yang, J. Lyu, and G. Yue. 2018. Development and application of the design principle of fluidization state specification in CFB coal combustion. Fuel Processing Tech- Nology 174:41–52. doi:10.1016/j.fuproc.2018.02.009.
  • Chapman, S., and T. George Cowling. 1990. The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge, United Kingdom: Cambridge university press.
  • Chen, W.-H., B.-J. Lin, Y.-Y. Lin, Y.-S. Chu, A. T. Ubando, P. L. Show, H. C. Ong, J.-S. Chang, S.-H. Ho, A. B. Culaba, et al. 2021. Progress in biomass torrefaction: Principles, applica- tions and challenges. Prog. Energ. Combust. 82:100887. doi:10.1016/j.pecs.2020.100887.
  • Chomiak, J., and A. Karlsson. 1996. Flame liftoff in diesel sprays. Symp. (Int.) Combust. 26 (2):2557–2564. doi:10.1016/S0082-0784(96)80088-9.
  • Collado, F. J. 2018. Hydrodynamics model for the dilute zone of circulating fluidized beds. Pow. Technol. 328:108–13. doi:10.1016/j.powtec.2018.01.007.
  • Deng, B., M. Zhang, L. Shan, G. Wei, J. Lyu, H. Yang, and M. Gao. 2021. Modeling study on the dynamic characteristics in the full- loop of a 350 MW supercritical CFB boiler under load regulation. J. Energy Inst. 97:117–30. doi:10.1016/j.joei.2021.04.014.
  • Di Blasi, C. 2009. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 35 (2):121–40. doi:10.1016/j.pecs.2008.08.001.
  • Dinh, C.-B., S.-S. Hsiau, C.-Y. Su, M.-Y. Tsai, Y.-S. Chen, H.-B. Nguyen, and H.-P. Wan. 2021. Full-loop study of a dual fluidized bed cold flow system: Hydrodynamic simulation and validation. Adv. Powder Technol. 32 (3):670–82. doi:10.1016/j.apt.2021.01.012.
  • Fatehi, H., W. Weng, Z. Li, X.-S. Bai, and M. Aldén. 2021. Recent development in numerical simulations and experimental studies of biomass thermochemical conversion. Energy & Fuels 35 (9):6940–63. doi:10.1021/acs.energyfuels.0c04139.
  • Ghadirian, E., J. Abbasian, and H. Arastoopour. 2019. CFD simulation of gas and particle flow and a carbon capture process using a circulating fluidized bed (CFB) reacting loop. Pow. Technol. 344:27–35. doi:10.1016/j.powtec.2018.11.102.
  • Gidaspow, D. 1994. Multiphase flow and fluidization: Continuum and kinetic theory descriptions. New York, USA: Academic press.
  • Gómez, M. A., J. Porteiro, D. Patiño, and J. L. Míguez. 2014. CFD modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel 117:716–32. doi:10.1016/j.fuel.2013.08.078.
  • Gu, J., Q. Liu, W. Zhong, and A. Yu. 2020. Study on scale-up characteristics of oxy-fuel combustion in circulating fluidized bed boiler by 3D CFD simulation. Adv. Powder Technol. 31 (5):2136–51. doi:10.1016/j.apt.2020.03.007.
  • Hameed, S., A. Sharma, V. Pareek, H. Wu, and Y. Yu. 2019. A review on biomass pyrolysis models: Kinetic, net- work and mechanistic models. Biomass Bioenergy 123:104–22. doi:10.1016/j.biombioe.2019.02.008.
  • Hansson, K.-M., J. Samuelsson, C. Tullin, and L.-E. Åmand. 2004. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame 137 (3):265–77. doi:10.1016/j.combustflame.2004.01.005.
  • Hazenberg, T., and J. A. van Oijen. 2021. Structures and burning velocities of flames in iron aerosols. Proc. Combust. Inst. 38 (3):4383–90. doi:10.1016/j.proci.2020.07.058.
  • Hilton, J. E., and P. W. Cleary. 2014. Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Appl. Math. Model. 38 (17–18):38.17-18, pp. 4197–4214. doi:10.1016/j.apm.2014.02.013.
  • Johnsson, F., R. C. Zijerveld, J. C. Schouten, C. M. van den Bleek, and B. Leckner. 2000. Characterization of fluidization regimes by time-series analysis of pressure fluctuations. Int. J. Multiphas. Flow 26 (4):663–715. doi:10.1016/S0301-9322(99)00028-2.
  • Kadyrov, T., L. Fei, and W. Wang. 2019. Impacts of solid stress model on MP- PIC simulation of a CFB riser with EMMS drag. Pow. Technol. 354:517–28. doi:10.1016/j.powtec.2019.06.018.
  • Karim, M. R., and J. Naser. 2018. CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler. Fuel 222:656–74. doi:10.1016/j.fuel.2018.02.195.
  • Khan, A. A., W. de Jong, P. J. Jansens, and H. Spliethoff. 2009. Biomass combustion in fluidized bed boilers: Potential prob- lems and remedies. Fuel Process. Technol. 90 (1):21–50. doi:10.1016/j.fuproc.2008.07.012.
  • Kolbitsch, P., J. Bolhàr-Nordenkampf, T. Pröll, and H. Hofbauer. 2010. Operating experience with chemical looping com- bustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Int. J. Greenhouse Gas Control 4 (2):180–85. doi:10.1016/j.ijggc.2009.09.014.
  • Kong, D., S. Wang, M. Zhou, K. Luo, C. Hu, D. Li, and J. Fan. 2020. Three-dimensional full-loop numerical simulation of co-combustion of coal and refuse derived fuel in a pilot-scale circulating fluidized bed boiler. Chem. Eng. Sci. 220:115612. doi:10.1016/j.ces.2020.115612.
  • Ku, X., T. Li, and T. Løvås. 2015. CFD–DEM simulation of biomass gasification with steam in a fluidized bed reactor. Chem. Eng. Sci. 122:270–83. doi:10.1016/j.ces.2014.08.045.
  • Ku, X., L. Tian, T. Løvås, and Terese Løv°as. 2014. Eulerian–Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy & Fuels 28 (8):5184–96. doi:10.1021/ef5010557.
  • Larsson, A., M. Kuba, T. Berdugo Vilches, M. Seemann, H. Hofbauer, and H. Thunman. 2021. Steam gasification of biomass–typical gas quality and operational strategies derived from industrial-scale plants. Fuel Process. Technol. 212:106609. doi:10.1016/j.fuproc.2020.106609.
  • Leckner, B. 2017. Regimes of large-scale fluidized beds for solid fuel conversion. Pow. Technol. 308:362–67. doi:10.1016/j.powtec.2016.11.070.
  • Lee, B.-H., K.-M. Kim, Y.-H. Bae, H.-S. Oh, G.-B. Kim, C.-H. Jeon, and Y.-H. Ahn. 2022. Effect of bed particle size on the gas-particle hydrodynamics and wall erosion characteristics in a 550 MWe USC CFB boiler using CPFD simulation. Energy 254:124263. doi:10.1016/j.energy.2022.124263.
  • Leppalahti, J. and T. Koljonen. 1995. Nitrogen evolution from coal, peat and wood during gasification: Literature review. Fuel Process. Technol. 43 (1):1–45. doi:10.1016/0378-3820(94)00123-B.
  • Lin, J., K. Luo, C. Hu, L. Sun, and J. Fan. 2022. Full-loop simulation of a 1 MWth pilot-scale chemical looping combustion system. Chem. Eng. Sci. 249:117301. doi:10.1016/j.ces.2021.117301.
  • Li, S., and Y. Shen. 2021. CFD investigation of maldistribution in a full- loop circulating fluidized bed with double parallel cyclones. Pow. Technol. 381:665–84. doi:10.1016/j.powtec.2020.12.020.
  • Liu, S., H. Wang, F. Jiang, and W. Q. Yang. 2002. A new image reconstruction method for tomographic investigation of fluidized beds. AIChE J. 48(8):1631–38. doi:10.1002/aic.690480806.
  • Li, J.-S., L.-T. Zhu, W.-C. Yan, T. A. B. Rashid, Q.-J. Xu, and Z.-H. Luo. 2021. Coarse-grid simulations of full-loop gas-solid flows using a hybrid drag model: Investigations on turbulence models. Pow. Technol. 379:108–26. doi:10.1016/j.powtec.2020.10.052.
  • Lun, C. K. K., S. B. Savage, D. J. Jeffrey, and N. Chepurniy. 1984. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140:223–56. doi:10.1017/S0022112084000586.
  • Luo, H., X. Wang, X. Liu, X. Wu, X. Shi, and Q. Xiong. 2022. A review on CFD simulation of biomass py- rolysis in fluidized bed reactors with emphasis on particle-scale models. J Anal Appl Pyrolysis 162:105433. doi:10.1016/j.jaap.2022.105433.
  • Luo, K., F. Wu, S. Yang, M. Fang, and J. Fan. 2015. High-fidelity simulation of the 3-D full-loop gas–solid flow characteristics in the circulating fluidized bed. Chem. Eng. Sci. 123:22–38. doi:10.1016/j.ces.2014.10.039.
  • Luo, H., L. Zhimin, P. A. Jensen, P. Glarborg, W. Lin, K. Dam-Johansen, and H. Wu. 2020. Experimental and modelling study on the influence of wood type, density, water content, and temperature on wood devolatilization. Fuel 260:116410. doi:10.1016/j.fuel.2019.116410.
  • Lu, Y., Y. Zhou, L. Yang, X. Hu, X. Luo, and H. Chen. 2018. Verification of optimal models for 2D-full loop simulation of circulating fluidized bed. Adv. Powder Technol. 29 (11):2765–74. doi:10.1016/j.apt.2018.07.024.
  • Ma, Q., F. Lei, X. Xu, and Y. Xiao. 2017. Three-dimensional full-loop simulation of a high-density CFB with standpipe aeration experiments. Pow. Technol. 320:574–85. doi:10.1016/j.powtec.2017.07.094.
  • Ma, W., C. Ma, X. Liu, T. Gu, S. K. Thengane, A. Bourtsalas, and G. Chen. 2021. Nox formation in fixed-bed biomass combustion: Chemistry and modeling. Fuel 290:119694. doi:10.1016/j.fuel.2020.119694.
  • Muhammad, A., N. Zhang, and W. Wang. 2019. CFD simulations of a full-loop CFB reactor using coarse-grained Eulerian-Lagrangian dense discrete phase model: Effects of modeling parameters. Pow. Technol. 354:615–29. doi:10.1016/j.powtec.2019.06.016.
  • Nikoo, M. B., and N. Mahinpey. 2008. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy 32 (12):1245–54. doi:10.1016/j.biombioe.2008.02.020.
  • O’Rourke, P. J., and D. M. Snider. 2010. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chem. Eng. Sci. 65 (22):6014–28. issn: 0009-2509. doi:10.1016/j.ces.2010.08.032.
  • O’Rourke, P. J., and D. M. Snider. 2012. Inclusion of collisional return-to- isotropy in the MP-PIC method. Chem. Eng. Sci. 80:39–54. issn: 0009-2509. doi:10.1016/j.ces.2012.05.047.
  • Qi, T., T. Lei, B. Yan, G. Chen, Z. Li, H. Fatehi, Z. Wang, and X.-S. Bai. 2019. Biomass steam gasification in bubbling fluidized bed for higher- H2 syngas: CFD simulation with coarse grain model. Int. J. Hydrog Energy 44 (13):6448–60. doi:10.1016/j.ijhydene.2019.01.146.
  • Ranz, W. E., and W. R. Marshall. 1952. Evaporation from drops, part i. chem- ical eng. progress 48:141–46.
  • snider, d. m. 2001. An incompressible three-dimensional multiphase particle-in- cell model for dense particle flows. J. Comput. Phys. 170 (2):523–49. issn: 0021-9991. doi:10.1006/jcph.2001.6747.
  • Sun, R., and H. Xiao. 2015. Diffusion-based coarse graining in hybrid continuum– discrete solvers: Theoretical formulation and a priori tests. Int. J. Multiphas. Flow 77:142–57. doi:10.1016/j.ijmultiphaseflow.2015.08.014.
  • Svensson, A., F. Johnsson, and B. Leckner. 1996. Bottom bed regimes in a cir- culating fluidized bed boiler. Int. J. Multiphas. Flow 22 (6):1187–204. doi:10.1016/0301-9322(96)00025-0.
  • Tsuji, Y., T. Kawaguchi, and T. Tanaka. 1993. Discrete particle simulation of two- dimensional fluidized bed. Pow. Technol. 77 (1):79–87. issn: 0032-5910. doi:10.1016/0032-5910(93)85010-7.
  • Tu, Q., and H. Wang. 2018. CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model. Pow. Technol. 323:534–47. doi:10.1016/j.powtec.2017.09.045.
  • Vainio, E., A. Brink, M. Hupa, H. Vesala, and T. Kajolinna. 2012. Fate of fuel nitrogen in the furnace of an industrial bubbling fluidized bed boiler during combustion of biomass fuel mixtures. Energy & Fuels 26 (1):94–101. doi:10.1021/ef201145j.
  • Vikram, S., P. Rosha, and S. Kumar. 2021. Recent modeling approaches to biomass pyrolysis: A review. Energy & Fuels 35 (9):7406–33. doi:10.1021/acs.energyfuels.1c00251.
  • Wang, S., K. Luo, H. Chenshu, and J. Fan. 2017. CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chem. Eng. Sci. 172:199–215. doi:10.1016/j.ces.2017.05.052.
  • Wang, S., K. Luo, H. Chenshu, L. Sun, and J. Fan. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Pow. Technol. 333:304–16. doi:10.1016/j.powtec.2018.04.027.
  • Weissinger, A., T. Fleckl, and I. Obernberger. 2004. In situ FT-IR spectroscopic investigations of species from biomass fuels in a laboratory-scale combustor: The release of nitrogenous species. Combust. Flame 137 (4):403–17. doi:10.1016/j.combustflame.2004.02.010.
  • Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. 1998. A tensorial approach to computational continuum me- chanics using object-oriented techniques. Comp. Phys. 12 (6):620–31. doi:10.1063/1.168744.
  • Wen, C. Y. 1966. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser 62:100–11.
  • Winter, F., C. Wartha, and H. Hofbauer. 1999. NO and N2O for- mation during the combustion of wood, straw, malt waste and peat. Bioresour. Technol. 70 (1):39–49. doi:10.1016/S0960-8524(99)00019-X.
  • Yan, L., Y. Cao, H. Zhou, and B. He. 2018. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory. Bioresour. Technol. 269:384–92. doi:10.1016/j.biortech.2018.08.099.
  • Yang, M., S. Morteza Mousavi, H. Fatehi, and X.-S. Bai. 2023. Numerical simulation of biomass gasification in fluidized bed gasifiers. Fuel 337:127104. doi:10.1016/j.fuel.2022.127104.
  • Yang, S., and S. Wang. 2020. Eulerian-Lagrangian simulation of the full- loop gas-solid hydrodynamics in a pilot-scale circulating fluidized bed. Pow. Technol. 369:223–37. doi:10.1016/j.powtec.2020.05.043.
  • Yang, S., S. Wang, and H. Wang. 2020. Numerical study of biomass gasification in a 0.3 MWth full-loop circulating fluidized bed gasifier. Energy Convers. Manage. 223:113439. doi:10.1016/j.enconman.2020.113439.
  • Yang, S., H. Wang, Y. Wei, J. Hu, and J. W. Chew. 2019. Numerical investigation of bubble dynam- ics during biomass gasification in a bubbling fluidized bed. ACS Sust. Chem & Eng 7 (14):12288–303. doi:10.1021/acssuschemeng.9b01628.
  • Yang, M., J. Zhang, S. Zhong, T. Li, T. Løvås, H. Fatehi, and X.-S. Bai. 2022. CFD modeling of biomass combustion and gasification in fluidized bed reactors using a distribution kernel method. Combust. Flame 236:111744. doi:10.1016/j.combustflame.2021.111744.
  • Yan, L., C. Jim Lim, G. Yue, B. He, and J. R. Grace. 2016. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions. Bioresour. Technol. 221:625–35. issn: 0960-8524. doi:10.1016/j.biortech.2016.09.089.
  • Zhou, H., A. D. Jensen, P. Glarborg, and A. Kavaliauskas. 2006. Formation and reduction of nitric oxide in fixed-bed combustion of straw. Fuel 85 (5–6):705–16. doi:10.1016/j.fuel.2005.08.038.
  • Zhou, Z. Y., S. B. Kuang, K. W. Chu, and A. B. Yu. 2010. Discrete particle simulation of particle–fluid flow: Model formulations and their applicability. J. Fluid Mech. 661:482–510. doi:10.1017/S002211201000306X.