329
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Thermoacoustic Instability Precursor Based on the Acoustic Flux at the Combustion Chamber Inlet

, , & ORCID Icon
Pages 3357-3371 | Received 05 May 2023, Accepted 20 May 2023, Published online: 02 Oct 2023

References

  • Benson, K., L. Tozzi, E. Van Dyne, and J. Barrett 2006. Method and apparatus for detecting combustion instability in continuous combustion systems. US Patent 7,096,722.
  • Boudy, F., D. Durox, T. Schuller, and S. Candel. 2012. Nonlinear flame describing function analysis of galloping limit cycles featuring chaotic states in premixed combustors. Turbo Expo: Power For Land, Sea, And Air. GT2012-68998: 713–24. doi:10.1115/GT2012-68998.
  • Chung, J. Y., and D. A. Blaser. 1980a. Transfer function method of measuring in-duct acoustic properties. I. Theory. J. Acoust. Soc. Am. 68 (3):907–13. doi:10.1121/1.384778.
  • Chung, J. Y., and D. A. Blaser. 1980b. Transfer function method of measuring in-duct acoustic properties. II. Experiment. J. Acoust. Soc. Am. 68 (3):914–21.10.1121/1.384779
  • Gotoda, H., H. Nikimoto, T. Miyano, and S. Tachibana. 2011. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos: An Interdiscip. J. Nonlinear Sci. 21 (1). doi:10.1063/1.3563577.
  • Hoehne, P., and F. Schroer 2014. Pressure-measuring device and pressure-measuring method for a turbomachine. US Patent S 2013/0139578.
  • Hurle, I., R. Price, T. M. Sugden, and A. Thomas. 1968. Sound emission from open turbulent premixed flames. Proc. R Soc. Lond A Math. Phys. Sci. 303 (1475):409–27. doi:10.1098/rspa.1968.0058.
  • Juniper, M. P., and R. Sujith. 2018. Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50 (1):661–89. doi:10.1146/annurev-fluid-122316-045125.
  • Kashinath, K., I. C. Waugh, and M. P. Juniper. 2014. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: Bifurcations and routes to chaos. J. Fluid. Mech. 761:399–430. doi:10.1017/jfm.2014.601.
  • Lieuwen, T. 2005. Online combustor stability margin assessment using dynamic pressure data. J. Eng. Gas Turbines Power 127 (3):478–82. doi:10.1115/1.1850493.
  • Lieuwen, T. 2007. Systems and methods for detection of combustor stability margin’. US Patent 27,194,382 B2.
  • Lieuwen, T. C., and V. Yang. 2005. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. American Institute of Aeronautics and Astronautics. doi:10.2514/4.866807.
  • Mirat, C., D. Durox, and T. Schuller. 2015. Stability analysis of a swirled spray combustor based on flame describing function. Proc. Combust. Inst. 35:3291–3298. doi:10.1016/j.proci.2014.08.020.
  • Murugesan, M., and R. Sujith. 2015. Combustion noise is scale-free: Transition from scale-free to order at the onset of thermoacoustic instability. J. Fluid Mech. 772:225–45. doi:10.1017/jfm.2015.215.
  • Nair, S., and T. Lieuwen. 2005. Acoustic detection of blowout in premixed flames. J. Propul. Power 21 (1):32–39. doi:10.2514/1.5658.
  • Nair, V., and R. Sujith. 2014. Multifractality in combustion noise: Predicting an impending combustion instability. J. Fluid Mech. 747:635–55. doi:10.1017/jfm.2014.171.
  • Nair, V., and R. Sujith. 2015. A reduced-order model for the onset of combustion instability: Physical mechanisms for intermittency and precursors. Proc. Combust. Inst. 35 (3):3193–200. doi:10.1016/j.proci.2014.07.007.
  • Nair, V., and R. I. Sujith. 2013. Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos: An Interdiscip. J. Nonlinear Sci. 23 (3):033136. doi:10.1063/1.4821475.
  • Nair, V., G. Thampi, S. Karuppusamy, S. Gopalan, and R. I. Sujith. 2013. Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5 (4):273–90. doi:10.1260/1756-8277.5.4.273.
  • Nair, V., G. Thampi, and R. Sujith. 2014. Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756:470–87. doi:10.1017/jfm.2014.468.
  • Nicoud, F., and T. Poinsot. 2005. Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes? Combust. Flame 142 (1):153–59. doi:10.1016/j.combustflame.2005.02.013.
  • Okuno, Y., M. Small, and H. Gotoda. 2015. Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudo-periodic and high-dimensional nature. Chaos: An Interdiscip. J. Nonlinear Sci. 25 (4):043107. doi:10.1063/1.4914358.
  • Poinsot, T. 2017. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1):1–28. doi:10.1016/j.proci.2016.05.007.
  • Rajendram Soundararajan, P., D. Durox, A. Renaud, G. Vignat, and S. Candel. 2022. Swirler effects on combustion instabilities analyzed with measured FDFs, injector impedances and damping rates. Combust. Flame 238:111947. doi:10.1016/j.combustflame.2021.111947.
  • Rayleigh. 1878. The explanation of certain acoustical phenomena1. Nature 18 (455):319–21. doi:10.1038/018319a0.
  • Schuller, T., T. Poinsot, and S. Candel. 2020. Dynamics and control of premixed combustion systems based on flame transfer and describing functions. J. Fluid Mech. 894:1. doi:10.1017/jfm.2020.239.
  • Sujith, R., and V. R. Unni. 2021. Dynamical systems and complex systems theory to study unsteady combustion. Proc. Combust. Inst. 38 (3):3445–62. doi:10.1016/j.proci.2020.07.081.
  • Tran, N., S. Ducruix, and T. Schuller. 2009. Damping combustion instabilities with perforates at the premixer inlet of a swirled burner. Proc. Combust. Inst. 32: 2917–2924. doi:10.1016/j.proci.2008.06.123.
  • Welch, P. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2):70–73. doi:10.1109/TAU.1967.1161901.
  • Yi, T., and E. J. Gutmark. 2008. Online prediction of the onset of combustion instability based on the computation of damping ratios. J. Sound Vib. 310 (1):442–47. doi:10.1016/j.jsv.2007.07.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.