344
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran

, , &
Pages 763-780 | Received 25 Oct 2012, Accepted 25 Mar 2014, Published online: 24 Mar 2015

References

  • Amini, M., K. C. Abbaspour, H. Khademi, N. Fathianpour, M. Afyuni, and R. Schulin. 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. European Journal of Soil Science 53: 748–57.
  • ASCE Task Committee. 2000. Artificial neural networks in hydrology—I: Preliminary concepts. Journal of Hydrologic Engineering ASCE 2: 115–23.
  • Bell, M. A., and H. van Keulen. 1995. Soil pedotransfer functions for four Mexican soils. Soil Science Society of America Journal 59: 865–71. doi:10.2136/sssaj1995.03615995005900030034x
  • Breeuwsma, A., J. H. M. Wösten, J. J. Vleeshouwer, A. M. Van Slobbe, and J. Bouma. 1986. Derivation of land qualities to assess environmental problems from soil surveys. Soil Science Society of America Journal 50: 186–90. doi:10.2136/sssaj1986.03615995005000010035x
  • Carpena, O., A. Lax, and K. Vahtras. 1972. Determination of exchangeable cations in calcareous soils. Soil Science 113: 194–99. doi:10.1097/00010694-197203000-00008
  • Cohen, S., and N. Intrator. 2001. Automatic model selection in a hybrid perceptron/radial network. Information Fusion: Special Issue on Multiple Experts 4: 259–66.
  • Cohen, S., and N. Intrator. 2003. A study of ensemble of hybrid networks with strong regularization. Multiple Classifier Systems 5: 227–35.
  • Dastorani, M. T., A. Moghadamnia, J. Piri, and M. Rico-Ramirez. 2010. Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment 166: 421–434. doi:10.1007/s10661-009-1012-8
  • Drake, E. H., and H. L. Motto. 1982. An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science 133: 281–88. doi:10.1097/00010694-198205000-00003
  • Fernando, M. J., R. G. Burau, and K. Arulanandan. 1977. A new approach to determination of cation exchange capacity. Soil Science Society of America Journal 41: 818–20. doi:10.2136/sssaj1977.03615995004100040043x
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In Methods of soil analysis, Part 1, ed. A. Klute, 383–411. Madison, WI: American Society of Agronomy and Soil Science Society of America.
  • Jang, J. S. R. 1993. ANFIS: Adaptive network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics 23: 665–685.
  • Jang, J. S. R., C. T. Sun, and E. Mizutani. 1997. Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Upper Saddle River, NJ: Prentice Hall.
  • Kaur, R., S. Kumar, and H. P. Gurung. 2002. A pedo-transfer function for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research 40: 847–57. doi:10.1071/SR01023
  • Kenneth, J. M., S. Wernter, and J. Macinyre. 2001. Knowledge extraction from radial basis function networks and multi-layer perceptrons. International Journal of Computational Intelligence and Applications 3: 369–82.
  • Keshavarzi, A., and F. Sarmadian. 2010. Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity. International Journal of Environmental and Earth Sciences 1: 1.
  • Keshavarzi, A., F. Sarmadian, R. Labbafi, and M. Rajabi Vandekhali. 2011. Modeling of soil cation exchange capacity based on fuzzy table look-up scheme and artificial neural network approach. Modern Applied Science 5: 1. doi:10.5539/mas.v5n1p153
  • Kişi, Ö. 2007. Stream flow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 12: 532–53. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)
  • Lim, T.-S., W.-Y. Loh, and Y.-S. Shih. 2000. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithm. Machine Learning 40: 203–28. doi:10.1023/A:1007608224229
  • Manrique, L. A., C. A. Jones, and P. T. Dyke. 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal 55: 787–94. doi:10.2136/sssaj1991.03615995005500030026x
  • Matlab User Manual. 2010. Fuzzy logic toolbox software with Matlab. Natick, MA: Mathworks.
  • McBratney, A. B., B. Minasny, S. R. Cattle, and R. W. Vervoort. 2002. From pedotransfer functions to soil inference systems. Geoderma 109: 41–73. doi:10.1016/S0016-7061(02)00139-8
  • Mermoud, A., and D. Xu. 2006. Comparative analysis of three methods to generate soil hydraulic functions. Soil and Tillage Research 87: 89–100. doi:10.1016/j.still.2005.02.034
  • Minasny, B., and A. B. McBratney. 2002. The neuro-m methods for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66: 352–61.
  • Minasny, B., A. B. McBratney, and K. L. Bristow. 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93: 225–53. doi:10.1016/S0016-7061(99)00061-0
  • Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part 2, 2nd ed., eds. A. L. Page, R. H. Miller, and D. R. Keeney, 539–80. Madison, WI: American Society of Agronomy.
  • Pachepsky, Y. A., and W. J. Rawls. 1999. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Science Society of America Journal 63: 1748–57. doi:10.2136/sssaj1999.6361748x
  • Parfitt, R. L., D. J. Giltrap, and J. S. Whitton. 1995. Contribution of organic matter and clay minerals to the cation exchange capacity of soils. Communications in Soil Science and Plant Analysis 26: 1343–55. doi:10.1080/00103629509369376
  • Rasiah, V. 1995. Comparison of pedotransfer functions to predict nitrogen‐mineralization parameters of one‐ and two‐pool models. Communications in Soil Science and Plant Analysis 26: 1873–84. doi:10.1080/00103629509369414
  • Sahrawat, K. L. 1983. An analysis of the contribution of organic matter and clay to cation exchange capacity of some Philippine soils. Communications in Soil Science and Plant Analysis 14: 803–09. doi:10.1080/00103628309367409
  • Schaap, M. G., F. J. Leij, and M. T. H. van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal 62: 847–55. doi:10.2136/sssaj1998.03615995006200040001x
  • Seybold, C. A., R. B. Grossman, and T. G. Reinsch. 2005. Predicting cation exchange capacity for soil survey using linear models. Soil Science Society of America Journal 69: 856–63. doi:10.2136/sssaj2004.0026
  • Shi, J. J. 2000. Reducing prediction error by transforming input data for neural networks. Journal of Computing in Civil Engineering 14: 109–16. doi:10.1061/(ASCE)0887-3801(2000)14:2(109)
  • Simpson, P. K. 1990. Artificial neural system: Foundation, paradigm, application, and implementation. New York: Pergamon Press.
  • Singh, T. N., R. Kanchan, A. K. Verma, and S. Singh. 2003. An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Mining Engineering Journal 5: 12–16.
  • Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Leoppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston, and M. E. Summer. 1996. Methods of soil analysis. Madison, WI: Soil Science Society of America.
  • Stewart, W. M., and L. R. Hossner. 2001. Factors affecting the ratio of cation exchange capacity to clay content in lignite overburden. Journal of Environment Quality 30: 1143–49. doi:10.2134/jeq2001.3041143x
  • USDA Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. Washington, DC: US Government Printing Office.
  • Van Bladel, R., R. Frankart, and H. R. Gheyi. 1975. A comparison of three methods of determining the cation exchange capacity of calcareous soils. Geoderma 13: 289–98. doi:10.1016/0016-7061(75)90042-7
  • Venkatesan, P., and S. Anitha. 2006. Application of a radial basis function neural network for diagnosis of diabetes mellitus. Current Science 91: 1195–99.
  • Vos, B. D., M. V. Meirvenne, P. Quataert, J. Deckers, and B. Muys. 2005. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Science Society of America Journal 69: 500–10. doi:10.2136/sssaj2005.0500
  • Yilmaz, I., and O. Kaynar. 2011. Multiple regression, ANN (RBF, MLP), and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications 38: 5958–66. doi:10.1016/j.eswa.2010.11.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.