104
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Using Thermal Sensitivity Analysis to Determine the Impact of Drainage on the Hydrochemistry of a Tropical Peat Soil from Malaysia

, , &
Pages 2168-2176 | Received 16 Sep 2014, Accepted 13 Feb 2015, Published online: 10 Sep 2015

References

  • Barrow, N. J., and T. C. Shaw. 1975. The slow reactions between soil and anions, 2: Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Science 119:167–77. doi:10.1097/00010694-197502000-00010.
  • Brown, K. A. 1986. Formation of organic sulphur in anaerobic peat. Soil Biology and Biochemistry 18:131–40. doi:10.1016/0038-0717(86)90017-9.
  • Clarholm, M., B. Popovic, T. Rosswall, B. Söderström, B. Sohlenius, H. Staaf, and A. Wirén. 1981. Biological aspects of nitrogen mineralization in humus from a pine forest podsol incubated under different moisture and temperature conditions. Oikos 37:137–45. doi:10.2307/3544457.
  • Dowrick, D. J., S. Hughes, C. Freeman, M. A. Lock, B. Reynolds, and J. A. Hudson. 1999. Nitrous oxide emissions from a gully mire in mid-Wales, U.K., under simulated summer drought. Biogeochemistry 44:151–62. doi:10.1007/BF00992976.
  • Fenner, N., D. J. Dowrick, M. A. Lock, C. R. Rafarel, and B. Reynolds. 2006. A novel approach to studying the effects of temperature on soil biogeochemistry using a thermal gradient bar. Soil Use and Management 22:267–73. doi:10.1111/j.1475-2743.2006.00037.x.
  • Freeman, C., M. A. Lock, and B. Reynolds. 1993a. Fluxes of CO2, CH4, and N2O from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change. Biogeochemistry 19:51–60. doi:10.1007/BF00000574.
  • Freeman, C., M. A. Lock, and B. Reynolds. 1993b. Climatic change and the release of immobilized nutrients from Welsh riparian wetland soils. Ecological Engineering 2:367–73. doi:10.1016/0925-8574(93)90004-Y.
  • Freeman, C., M. A. Lock, and B. Reynolds. 1993c. Impacts of climatic change on peatland hydrochemistry: A laboratory-based experiment. Chemistry and Ecology 8:49–59. doi:10.1080/02757549308035300.
  • Gordon, A. M., M. Tallas, and K. Cleve. 1987. Soil incubations in polyethylene bags: Effect of bag thickness and temperature on nitrogen transformations and CO2 permeability. Canadian Journal of Soil Science 67:65–76. doi:10.4141/cjss87-006.
  • Heathwaite, A. L. 1990. The effect of drainage on nutrient release from fen peat and its implications for water quality: A laboratory simulation. Water, Air and Soil Pollution 49:159–73. doi:10.1007/BF00279518.
  • Hooijer, A., S. E. Page, J. G. Canadell, M. Silvius, J. Kwadijk, H. Wösten, and J. Jauhiainen. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–14. doi:10.5194/bg-7-1505-2010.
  • Hughes, S., D. J. Dowrick, C. Freeman, J. A. Hudson, and B. Reynolds. 1999. Methane emissions from a gully mire in mid-Wales, U.K., under consecutive summer water table drawdown. Environmental Science and Technology 33:362–65. doi:10.1021/es980563z.
  • Koerselman, W., M. B. Van Kerkhoven, and J. T. A. Verhoeven. 1993. Release of inorganic N, P, and K in peat soils: Effect of temperature, water chemistry, and water level. Biogeochemistry 20:63–81. doi:10.1007/BF00004135.
  • Lundin, L., and B. Bergquist. 1990. Effects on water chemistry after drainage of a bog for forestry. Hydrobiologia 196:167–81. doi:10.1007/BF00006108.
  • Malhi, S. S., W. B. McGill, and M. Nyborg. 1990. Nitrate losses in soils: Effect of temperature, moisture, and substrate concentration. Soil Biology and Biochemistry 22:733–37. doi:10.1016/0038-0717(90)90150-X.
  • Martikainen, P. J., H. Nykänen, J. Alm, and J. Silvola. 1995. Change in fluxes of carbon dioxide, methane, and nitrous oxide due to forest drainage of mire sites of different trophy. Plant and Soil 168-169:571–77. doi:10.1007/BF00029370.
  • Martikainen, P. J., H. Nykänen, P. Crill, and J. Silvola. 1993. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53. doi:10.1038/366051a0.
  • Melling, L., R. Hatano, and K. J. Goh. 2007. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Science and Plant Nutrition 53:792–805. doi:10.1111/j.1747-0765.2007.00196.x.
  • Moore, S., C. D. Evans, S. E. Page, M. H. Garnett, T. G. Jones, C. Freeman, A. Hooijer, A. J. Wiltshire, S. H. Limin, and V. Gauci. 2013. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–63. doi:10.1038/nature11818.
  • Moore, T. R., and M. Dalva. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science 44:651–64. doi:10.1111/ejs.1993.44.issue-4.
  • Naucke, W., A. L. Heathwaite, R. Eggelsmann, and M. Schuch. 1993. Mire chemistry. In Mires: Process, exploitation and conservation, ed. A. L. Heathwaite and K. Göttlich, 263–309. New York: John Wiley and Sons.
  • Nykanen, H., J. Alm, K. Lang, J. Silvola, and P. J. Martikainen. 1995. Emissions of CH4, N2O, and CO2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography 22:351–57. doi:10.2307/2845930.
  • Ogden, J. G. 1982. Seasonal mass balance of major ions in three small watersheds in a maritime environment. Water, Air and Soil Pollution 17:119–30.
  • Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. doi:10.1038/nature01131.
  • Patrick Jr., W. H., and R. A. Khalid. 1974. Phosphate release and sorption by soils and sediments: Effect of aerobic and anaerobic conditions. Science 186:53–55. doi:10.1126/science.186.4158.53.
  • Ponnamperuma, F. M. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29–96.
  • Reddy, K. R. 1982. Mineralization of nitrogen in organic soils. Soil Science Society of America Journal 46:561–66. doi:10.2136/sssaj1982.03615995004600030024x.
  • Reynolds, B. 1984. A simple method for the extraction of soil solution by high speed centrifugation. Plant and Soil 78:437–40. doi:10.1007/BF02450378.
  • Richardson, C. J., and P. E. Marshall. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56:279–302. doi:10.2307/1942548.
  • Ross, S. M. 1985. Field and incubation temperature effects on mobilization of nitrogen, phosphorus, and potassium in peat. Soil Biology and Biochemistry 17:479–82. doi:10.1016/0038-0717(85)90013-6.
  • Saad, O. A. L. O., and R. Conrad. 1993. Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biology and Fertility of Soils 15:21–27. doi:10.1007/BF00336283.
  • Smid, A. E., and E. G. Beauchamp. 1976. Effects of temperature and organic matter on denitrification in soil. Canadian Journal of Soil Science 56:385–91. doi:10.4141/cjss76-047.
  • Terry, R. E., and R. L. Tate. 1980. Effect of flooding on microbial activities in organic soils: Nitrogen transformations. Soil Science 129:88–91. doi:10.1097/00010694-198002000-00002.
  • Townsend, A. R., P. M. Vitousek, and E. A. Holland. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic Change 22:293–303. doi:10.1007/BF00142430.
  • Williams, B. L. 1974. Effect of water-table level on nitrogen mineralization in peat. Forestry 47:195–202. doi:10.1093/forestry/47.2.195.
  • Williams, B. L. 1983. Nitrogen transformations and decomposition in litter and humus from beneath closed-canopy Sitka spruce. Forestry 56:17–32. doi:10.1093/forestry/56.1.17.
  • Williams, B. L., and R. E. Wheatley. 1988. Nitrogen mineralization and water-table height in oligotrophic deep peat. Biology and Fertility of Soils 6:141–47. doi:10.1007/BF00257664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.