191
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Biological, Physicochemical, and Spectral Properties of Aerated Compost Extracts: Influence of Aeration Quantity

, , , , , , & show all
Pages 2295-2310 | Received 31 Jul 2013, Accepted 01 Jul 2014, Published online: 07 Oct 2015

References

  • Amir, S., A. Jouraiphy, A. Meddich, M. El Gharous, P. Winterton, and M. Hafidi. 2010. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR, and 13C NMR. Journal of Hazardous Materials 177:524–29. doi:10.1016/j.jhazmat.2009.12.064.
  • Andelkovic, T. J., S. Provic, M. Blagojevic, R. Purenovic, A. B. Nikolic, and D. Andelkovic. 2006. Acidity of humic acid related to its oxygen-containing functional groups. Bulletin of the Chemists and Technologists of Macedonia 25:131–37.
  • Arancon, N. Q., C. A. Edwards, R. Dick, and L. Dick. 2007. Vermicompost tea production and plant growth impacts. Biocycle 48:51–52.
  • Bahram, M., R. Bro, C. Stedmon, and A. Afkhami. 2006. Handling of rayleigh and raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics 20:99–105. doi:10.1002/(ISSN)1099-128X.
  • Brinton, W. F., A. Trinkner, and M. Droffner. 1996. Investigations into liquid compost extracts. Biocycle 37:68–70.
  • Carballo, T., M. V. Gil, F. Calvol, and A. Morán. 2009. The influence of aeration system, temperature, and compost origin on the phytotoxicity of compost tea. Compost Science and Utilization 17:127–39. doi:10.1080/1065657X.2009.10702411.
  • Carballo, T., M. V. Gil, X. Gomez, F. Gonzalez-Andres, and A. Moran. 2008. Characterization of different compost extracts using fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 19:815–30. doi:10.1007/s10532-008-9184-4.
  • Caricasole, P., M. R. Provenzano, P. G. Hatcher, and N. Senesi. 2011. Evolution of organic matter during composting of different organic wastes assessed by CPMAS 13C NMR spectroscopy. Waste Management 31:411–15. doi:10.1016/j.wasman.2010.09.020.
  • Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh. 2003. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology 37:5701–10. doi:10.1021/es034354c.
  • Chon, S. U., J. H. Coutts, and C. J. Nelson. 2004. Osmotic and autotoxic effects of leaf extracts on germination and seedling growth of alfalfa. Agronomy Journal 96:1673–79. doi:10.2134/agronj2004.1673.
  • Droussi, Z., V. D’Orazio, M. R. Provenzano, M. Hafidi, and A. Ouatmane. 2009. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. Journal of Hazardous Materials 164:1281–85. doi:10.1016/j.jhazmat.2008.09.081.
  • Eyheraguibel, B., J. Silvestre, and P. Morard. 2008. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology 99:4206–12. doi:10.1016/j.biortech.2007.08.082.
  • Fu, P., F. Wu, C.-Q. Liu, Z. Wei, Y. Bai, and H. Liao. 2006. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, southwest China. Biogeochemistry 81:179–89. doi:10.1007/s10533-006-9035-5.
  • Hsu, J.-H., and S.-L. Lo. 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environmental Pollution 114:119–27. doi:10.1016/S0269-7491(00)00198-6.
  • Huang, G. F., Q. T. Wu, J. W. Wong, and B. B. Nagar. 2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology 97:1834–42. doi:10.1016/j.biortech.2005.08.024.
  • Ingham, E. R. 2000. Brewing compost tea. Kitchen Gardener 16–19.
  • Keeling, A. A., K. R. McCallum, and C. P. Beckwith. 2003. Mature green waste compost enhances growth and nitrogen uptake in wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) through the action of water-extractable factors. Bioresource Technology 90:127–32. doi:10.1016/S0960-8524(03)00125-1.
  • Lguirati, A., G. Ait Baddi, A. El Mousadik, V. Gilard, J. C. Revel, and M. Hafidi. 2005. Analysis of humic acids from aerated and non-aerated urban landfill composts. International Biodeterioration and Biodegradation 56:8–16. doi:10.1016/j.ibiod.2005.03.004.
  • McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46:38–48. doi:10.4319/lo.2001.46.1.0038.
  • Meissl, K., E. Smidt, and M. Schwanninger. 2007. Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72:791–99. doi:10.1016/j.talanta.2006.12.005.
  • Muscolo, A., F. Bovalo, F. Gionfriddo, and S. Nardi. 1999. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry 31:1303–11. doi:10.1016/S0038-0717(99)00049-8.
  • Muscolo, A., M. R. Panuccio, M. Sidari, and S. Nardi. 2005. The effects of humic substances on Pinus callus are reversed by 2, 4-dichlorophenoxyacetic acid. Journal of Chemical Ecology 31:577–90. doi:10.1007/s10886-005-2046-1.
  • Muscolo, A., and M. Sidari. 2006. Seasonal fluctuations in soil phenolics of a coniferous forest: Effects on seed germination of different coniferous species. Plant Soil 284:305–18. doi:10.1007/s11104-006-0040-1.
  • Muscolo, A., and M. Sidari. 2009. Carboxyl and phenolic humic fractions affect callus growth and metabolism. Soil Science Society of America Journal 73:1119–29. doi:10.2136/sssaj2008.0184.
  • Muscolo, A., M. Sidari, O. Francioso, V. Tugnoli, and S. Nardi. 2007. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. Journal of Chemical Ecology 33:115–29. doi:10.1007/s10886-006-9206-9.
  • Scheuerell, S. J., and W. F. Mahaffee. 2002. Compost tea: Principles and prospects for plant disease control. Compost Science and Utilization 10:313–38. doi:10.1080/1065657X.2002.10702095.
  • Scheuerell, S. J., and W. F. Mahaffee. 2006. Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Disease 90:1201–08. doi:10.1094/PD-90-1201.
  • Schreiber, B., T. Brinkmann, V. Schmalz, and E. Worch. 2005. Adsorption of dissolved organic matter onto activated carbon: The influence of temperature, absorption wavelength, and molecular size. Water Research 39:3449–56. doi:10.1016/j.watres.2005.05.050.
  • Senesi, N., and G. Brunetti. 1996. Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. In The Science of Composting, Part 1, ed. M. DeBertoldi, P. Sequi, B. Lemmes, and T. Papi, 195–212. Glasgow, UK: Blackie Academic and Professional.
  • Senesi, N., T. M. Miano, M. R. Provenzano, and G. Brunetti. 1991. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sciences 152:259–71. doi:10.1097/00010694-199110000-00004.
  • Sheng, G.-P., H.-Q. Yu, and X.-Y. Li. 2006. Stability of sludge flocs under shear conditions: Roles of extracellular polymeric substances (EPS). Biotechnol Bioeng 93:1095–102. doi:10.1002/(ISSN)1097-0290.
  • Siddiqui, Y., S. Meon, M. R. Ismail, and A. Ali. 2008a. Trichoderma-fortified compost extracts for the control of choanephora wet rot in okra production. Crop Protection 27:385–90. doi:10.1016/j.cropro.2007.07.002.
  • Siddiqui, Y., S. Meon, R. Ismail, M. Rahmani, and A. Ali. 2008b. Bio-efficiency of compost extracts on the wet rot incidence, morphological and physiological growth of okra (Abelmoschus esculentus [(L.) Moench]). Scientia Horticulturae 117:9–14. doi:10.1016/j.scienta.2008.03.008.
  • Smidt, E., and K. Meissl. 2007. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management 27:268–76. doi:10.1016/j.wasman.2006.01.016.
  • Spaccini, R., and A. Piccolo. 2008. Spectroscopic characterization of compost at different maturity stages. Clean Soil, Air, Water 36:152–57. doi:10.1002/(ISSN)1863-0650.
  • Spaccini, R., and A. Piccolo. 2009. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biology and Biochemistry 41:1164–72. doi:10.1016/j.soilbio.2009.02.026.
  • Sun, W. L., J. R. Ni, N. Xu, and L. Y. Sun. 2007. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 66:700–7. doi:10.1016/j.chemosphere.2006.07.078.
  • Tang, J.-C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of the maturing process of cattle manure compost. Process Biochemistry 41:380–89. doi:10.1016/j.procbio.2005.06.022.
  • Tang, Z., G. H. Yu, D. Y. Liu, D. B. Xu, and Q. R. Shen. 2011. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity. Chemosphere 82:1202–08. doi:10.1016/j.chemosphere.2010.11.032.
  • Traversa, A., E. Loffredo, C. E. Gattullo, and N. Senesi. 2010. Water-extractable organic matter of different composts: A comparative study of properties and allelochemical effects on horticultural plants. Geoderma 156:287–92. doi:10.1016/j.geoderma.2010.02.028.
  • Wu, L., and L. Q. Ma. 2002. Relationship between compost stability and extractable organic carbon. Journal of Environment Quality 31:1323–28. doi:10.2134/jeq2002.1323.
  • Xu, H. C., P. J. He, G. Z. Wang, and L. M. Shao. 2010. Three-dimensional excitation emission matrix fluorescence spectroscopy, and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Science and Technology 61:2931–42. doi:10.2166/wst.2010.197.
  • Yu, G.-H., P.-J. He, and L.-M. Shao. 2010a. Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis. Water Research 44:797–806. doi:10.1016/j.watres.2009.10.021.
  • Yu, G.-H., Y.-H. Luo, M.-J. Wu, Z. Tang, D.-Y. Liu, X.-M. Yang, and Q.-R. Shen. 2010b. PARAFAC modeling of fluorescence excitation−emission spectra for rapid assessment of compost maturity. Bioresource Technology 101:8244–51. doi:10.1016/j.biortech.2010.06.007.
  • Zbytniewski, R., and B. Buszewski. 2005. Characterization of natural organic matter (NOM) derived from sewage sludge compost, part 2: Multivariate techniques in the study of compost maturation. Bioresource Technology 96:479–84. doi:10.1016/j.biortech.2004.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.