192
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of Arbuscular Mycorrhizal Fungi on Seedling Growth and Physiological Traits of Melilotus officinalis L. Grown Under Salinity Stress Conditions

, , &
Pages 822-831 | Received 22 Apr 2015, Accepted 27 May 2015, Published online: 21 Apr 2016

References

  • Abbott, L., and A. Robson. 1991. Factors influencing the occurrence of vesicular arbuscular mycorrhizas. Agriculture, Ecosystems & Environment 35:121–50. doi:10.1016/0167-8809(91)90048-3.
  • Abdul-Qados, A. M. S. 2010. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 10:7–15. doi:10.1016/j.jssas.2010.06.002.
  • Al-Karaki, G. N. 2000. Growth, sodium, and potassium uptake and translocation in salt stressed tomato. Journal of Plant Nutrition 23:369–79. doi:10.1080/01904160009382023.
  • Al-Karaki, G. N., R. Hammad, and M. Rusan. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47. doi:10.1007/s005720100098.
  • Al-Karaki, G. N., B. Mc-Michael, and J. Zak. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–9. doi:10.1007/s00572-003-0265-2.
  • Araim, G., A. Saleem, J. T. Arnason, and C. Charest. 2009. Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. Journal of Agricultural and Food Chemistry 57:2255–8. doi:10.1021/jf803173x.
  • Ashraf, M., H. R. Athar, P. J. C. Harris, and T. R. Kwon. 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97:45–110.
  • Ashraf, M., and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206–16. doi:10.1016/j.envexpbot.2005.12.006.
  • Ashraf, M., N. Mukhtar, S. Rehman, and E. S. Rha. 2004. Salt-induced changes in photosynthetic activity and growth in a potential plant Bishop,s weed (Ammolei majus L.). Photosynthetica 42:543–50. doi:10.1007/S11099-005-0011-4.
  • Auge, R. M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097.
  • Auge, R. M., J. L. Moore, K. Cho, J. C. Stutz, D. M. Sylvia, A. K. Al-Agely, and A. M. Saxton. 2003. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. Journal of Plant Physiology 160:1147–56. doi:10.1078/0176-1617-01154.
  • Berta, G., A. Trotta, A. Fusconi, J. Hooker, M. Munro, D. Atkinson, M. Giovannetti, S. Morini, P. Fortuna, B. Tisserant, V. Gianinazzi- Pearson, and S. Gianinazzi. 1995. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera L. Tree Physiology 15:281–93. doi:10.1093/treephys/15.5.281.
  • Boucher, A., Y. Dalp, and C. Charest. 1999. Effect of arbuscular mycorrhizal colonization of four species of Glomus on physiological responses of maize. Journal of Plant Nutrition 22:783–97. doi:10.1080/01904169909365671.
  • Bouwmeester, H. J., C. Roux, J. A. Lopez-Raez, and G. Becard. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Sciences 12:224–30. doi:10.1016/j.tplants.2007.03.009.
  • Burbott, A. J., and D. Loomis. 1969. Evidence for metablic turnver monoterpene in peppermint. Plant Physiology 44:173–9. doi:10.1104/pp.44.2.173.
  • Campanelli, A., C. Ruta, I. Morone-Fortunato, and G. De Mastro. 2013. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: In vitro selection. Central European Journal of Biology 8 (8):765–6.
  • Cantrell, I. C., and R. G. Linderman. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil 233:269–81. doi:10.1023/A:1010564013601.
  • Carrow, R. N., and R. R. Duncan. 1998. Salt-Affected Turfgrass Sites: Assessment and Management. Hoboken, NJ: John Wiley & Sons.
  • Cerda, A., and V. Martinez. 1998. Nitrogen fertilization under saline conditions in tomato and cucumber plants. Journal of Horticultural Science 63:451–8.
  • Chelli-Chaabouni, A., A. B. Mosbah, M. Maalej, K. Gargouri, R. Gargouri-Bouzid, and N. Drira. 2010. In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environmental and Experimental Botany 69:302–12. doi:10.1016/j.envexpbot.2010.05.010.
  • Chen, Z., A. C. Tracy, M. Zhou, A. Twomey, B. Naidu, and S. Shabala. 2007. Compatible solute accumulation and stress mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany 58:4245–55. doi:10.1093/jxb/erm284.
  • Cheruth, J., G. Ragupathi, K. Ashot, M. Paramasivam, S. Beemarao, and P. Rajaram. 2008. Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiologiae Plantarum 30 (3):287–92. doi:10.1007/s11738-007-0119-1.
  • Chinnusamy, V., A. Jagendorf, and J. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Science Society of America 45:437–48. doi:10.2135/cropsci2005.0437.
  • Çiçek, N., and H. Çakirlar. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology 28 (1–2):66–74.
  • Clevenger, J. F. 1928. Apparatus for determination of essential oil. Journal of American Pharmacists Association 17:346–9.
  • Close, T. J. 1996. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Journal of Plant Physiology 97:795–803. doi:10.1111/j.1399-3054.1996.tb00546.x.
  • Close, T. J., and P. M. Chandler. 1990. Cereal dehydrins: Serology, gene mapping and potential functional roles. Australian Journal of Plant Physiology 17:333–44. doi:10.1071/PP9900333.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C. M. Rivera, and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils 44:501–9. doi:10.1007/s00374-007-0232-8.
  • Dewan, M. L., and J. Famouri. 1964. The soils of Iran. Rome: FAO.
  • Dixon, R. K., M. V. Rao, and V. K. Garg. 1994. Water relations and gas exchange of mycorrhizal Leucaena leucocephala seedlings. Journal of Tropical Forest Science 6:542–52.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany 104:1263–80. doi:10.1093/aob/mcp251.
  • Feng, G., X. L. Li, F. S. Zhang, and S. X. Li. 2000. Effect of AM fungi on water and nutrition status of corn plants under salt stress. Chinese Journal of Applied Ecology 11:595–8.
  • Feng, G., F. S. Zhang, X. L. Li, C. Y. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–90. doi:10.1007/s00572-002-0170-0.
  • Ferreira-Silva, S. L., J. A. G. Silveira, E. L. Voigt, L. S. P. Soares, and R. A. Viegas. 2008. Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology 20 (1):51–9. doi:10.1590/S1677-04202008000100006.
  • Ghazi, N., and G. N. Al-Karaki. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae 109:1–7. doi:10.1016/j.scienta.2006.02.019.
  • Giri, B., and K. G. Mukerji. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:304–12. doi:10.1007/s00572-003-0274-1.
  • Juniper, S., and L. K. Abbott. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–9. doi:10.1007/s00572-006-0046-9.
  • Kapoor, K., and A. Srivastava. 2010. Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology 2 (2):73–85. doi:10.3923/ajbkr.2010.73.85.
  • Karakas, F. P., A. Yildirim, and A. Turker. 2012. Biological screening of various medicinal plant extracts for antibacterial and antitumor activities. Turkish Journal of Biology 36:641–52.
  • Karimi, H., and H. Yusef-Zadeh. 2013. The effect of salinity level on the morphological and physiological traits of two grape (Vitis vinifera L.) Cultivars. International journal of Agronomy and Plant Production 4 (5):1108–17.
  • Khalid, A. K. 2012. Effect of NP and foliar spray on growth and chemical compositions of some medicinal Apiaceae plants grow in arid regions in Egypt. Journal of Soil Science and Plant Nutrition 12 (3):581–96.
  • Khosravinejad, F., R. Heydari, and T. Farboodnia. 2009. Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biological Sciences 12 (2):158–62. doi:10.3923/pjbs.2009.158.162.
  • Kumar, A., S. Sharma, and S. Mishra. 2010. Influence of Arbuscular Mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and Mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation 29:297–306. doi:10.1007/s00344-009-9136-1.
  • Lambers, H., F. S. Chapin III, and T. L. Pons. 1998. Plant physiological ecology, 540. New York: Springer-Verlag.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193:265–75.
  • Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum 105:450–8. doi:10.1034/j.1399-3054.1999.105309.x.
  • Majerus, M. 1996. Plant materials for saline-alkaline soils. USDA. Natural Resources Conservation Service. Bridger Plant Materials Center. Montana Technical Note 26:55.
  • Manoharan, P. T., M. Pandi, V. Shanmugaiah, S. Gomathinayagam, and N. Balasubramanian. 2008. Effect of vesicular arbuscular mycorrhizal fungus on the physiological and biochemical changes of five different tree seedlings grown under nursery conditions. African Journal of Biotechnology 7:3431–36.
  • Modarres, R., and V. P. R. Silva. 2007. Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environments 70:344–55. doi:10.1016/j.jaridenv.2006.12.024.
  • Morales, C., R. M. Cusido, J. Palazon, and M. Bonfill. 1993. Response of Digitalis purpurea plants to temporary salinity. Journal of Plant Nutrition 16 (2):327–35. doi:10.1080/01904169309364534.
  • Ordookhani, K., S. Sharafzadeh, and M. Zare. 2011. Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Advances in Environmental Biology 5 (4):672–7.
  • Plenchette, C., J. A. Fortin, and V. Furlan. 1983. Growth response of several plants species to mycorrhiza in soil of moderate P fertility: Mycorrhizal dependency under field conditions. Plant and Soil 70:191–209. doi:10.1007/BF02374781.
  • Porcel, R., R. Aroca, and J. M. Ruiz-Lozano. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 32:181–200. doi:10.1007/s13593-011-0029-x.
  • Qasim, M., M. Ashraf, Y. Ashraf, R. Ahmad, and S. Nazli. 2004. Some growth related characteristics in Canola (Brassica napus L.) under salinity stress. International Journal of Agriculture and Biology 6:665–8.
  • Qiang-Sheng, W., and Z. Ying-Ning. 2011. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. ScienceAsia 35:388–91.
  • Quijano-Celis, C. E., J. A. Pino, and G. Morales. 2010. Chemical Composition of the Leaves Essential Oil of Melilotus officinalis (L.) Pallas from Colombia. Journal of Essential Oil Bearing Plants 13 (3):313–15. doi:10.1080/0972060X.2010.10643826.
  • Ruiz-Lozano, J. M., R. Azcon, and M. Gomez. 1996. Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum 98: 767–772.
  • Sairam, R. K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86:407–21.
  • Schonfeld, M. A., R. C. Johnson, B. F. Carver, and D. W. Mornhinweg. 1988. Water relations in winter wheat as drought resistance indicator. Crop Science 28:526–31. doi:10.2135/cropsci1988.0011183X002800030021x.
  • Sharifi, M., M. Ghorbanli, and H. Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology 164:1144–51. doi:10.1016/j.jplph.2006.06.016.
  • Shinde, S. K., B. P. Shinde, and S. W. Patale. 2013. The alleviation of salt stress by the activity of AM fungi in growth and productivity of union (Allium cepa L.) plant. International Journal of Life science and Pharma Reviews 3 (1):11–15.
  • Siadat, H., M. Bybordi, and M. J. Malakouti. 1997. Salt-affected soils of Iran: A country report. International symposium on “Sustainable Management of Salt Affected Soils in the Arid Ecosystem”. Cairo. Egypt.
  • Sibole, J. V., C. Cabot, C. Poschenrieder, and J. Barcelo. 2003. Ion allocation in two different salt-tolerant Medicago species. Journal of Plant Physiology 160:1361–5. doi:10.1078/0176-1617-00811.
  • Slathia, S., A. Sharma, and S. P. Choudhary. 2012. Influence of Exogenously Applied Epibrassinolide and Putrescine on Protein Content, Antioxidant Enzymes and Lipid Peroxidation in Lycopersicon esculentum under Salinity Stress. American Journal of Plant Sciences 3:714–20. doi:10.4236/ajps.2012.36086.
  • Subramanian, K. S., and C. Charest. 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–8. doi:10.1007/BF00204961.
  • Tian, C. Y., G. Feng, X. L. Li, and F. S. Zhang. 2004. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Applied Soil Ecology 26:43–8. doi:10.1016/j.apsoil.2003.10.010.
  • Vinutha, T. 2005. Biochemical Studies on Ocimum sp. Inoculated with microbial inoculants. M.Sc. Thesis, University of Agricultural Sciences, Bangalore, India.
  • Yano-Melo, A. M., O. J. Saggin, and L. C. Maia. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystems & Environment 95:343–8. doi:10.1016/S0167-8809(02)00044-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.