146
Views
4
CrossRef citations to date
0
Altmetric
Articles

Potential of Chitosan (Chemically Modified Chitin) for Extraction of Lead-Arsenate Contaminated Soils

&
Pages 1650-1663 | Received 05 Jan 2015, Accepted 27 Apr 2016, Published online: 08 Sep 2016

References

  • Altin, A., and M. Degirmenci. 2005. Lead (II) removal from natural soils by enhanced electrokinetic remediation. Science of the Total Environment 337 (1–3):1–10. doi:10.1016/j.scitotenv.2004.06.017.
  • Ansari, R., and M. Sadegh. 2007. Application of activated carbon for removal of arsenic ions from aqueous solutions. Journal of Chemical Education 4:103–08.
  • Aranaz, I., M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, and A. Heras. 2009. Functional characterization of chitin and chitosan. Current Chemical Biology 3:203–30.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2007. Lead toxicity, what are the U.S. standards for lead levels. http://www.atsdr.cdc.gov/csem/ ( accessed July 16, 2014)
  • Awual, R., and M. Hasan. 2014. A novel fine-tuning mesoporous adsorbent for simultaneous lead (II) detection and removal from wastewater. Sensors and Actuators B: Chemical Journal 202:395–403. doi:10.1016/j.snb.2014.05.103.
  • Azlan, K., W. N. Wan Saime, and L. Lai Ken. 2009. Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences 21 (3):296–302. doi:10.1016/S1001-0742(08)62267-6.
  • Babiker, E. E. 2002. Effect of chitosan conjugation on the functional properties and bactericidal activity of gluten peptides. Food Chemistry 79:367–72. doi:10.1016/S0308-8146(02)00188-7.
  • Bhakat, P., A. Gupta, S. Ayoob, and S. Kundu. 2006. Investigations on arsenic (V) removal by modified calcined bauxite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 281 (1–3):237–45. doi:10.1016/j.colsurfa.2006.02.045.
  • Bhatnagar, A., and M. Sillanpää. 2009. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—A short review. Advances in Colloid and Interface Science 152:26–38. doi:10.1016/j.cis.2009.09.003.
  • Boamah, P. O., Q. Zhang, M. Hua, Y. Huang, Y. Liu, W. Wang, and Y. Liu. 2014. Lead removal onto cross-linked low molecular weight chitosan pyruvic acid derivatives. Carbohydrate Polymers 110:518–27. doi:10.1016/j.carbpol.2014.03.034.
  • Buchireddy, P. R., R. M. Bricka, and D. B. Gent. 2009. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. Journal of Hazardous Materials 162:490–97. doi:10.1016/j.jhazmat.2008.05.092.
  • Caravelli, A. H., E. M. Contreras, and N. E. Zaritzky. 2010. Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. Journal of Hazardous Materials 177:199–208. doi:10.1016/j.jhazmat.2009.12.018.
  • Chatain, V., K. Hanna, C. De Brauer, R. Bayard, and P. Germain. 2004. Enhanced solubilization of arsenic and 2, 3, 4, 6 tetrachlorophenol from soils by a cyclodextrin derivative. Chemosphere 57:197–206. doi:10.1016/j.chemosphere.2004.07.002.
  • Chen, C.-C., and Y.-C. Chung. 2006. Arsenic removal using a biopolymer chitosan sorbent. Journal of Environmental Science and Health, Part A 41 (4):645–58. doi:10.1080/10934520600575044.
  • Chien, J. C., and L. C. Lin. 1994. Human carcinogenicity and antherogenicity induced by chronic exposure to inorganic arsenic. In Arsenic in the environment, Part II: Human health and ecosystem effects, ed. J. O. Nriagu, 109–31. New York: John Wiley and Sons.
  • Choi, J. W., S. Y. Lee, K. Y. Park, K. B. Lee, D. J. Kim, and S. H. Lee. 2011. Investigation of phosphorous removal from wastewater through ion exchange of mesostructure based on inorganic material. Desalination 266:281–85. doi:10.1016/j.desal.2010.08.015.
  • Chung, H. I., and B. H. Kang. 1999. Lead removal from contaminated marine clay by electrokinetic soil decontamination. Engineering Geology 53:139–50. doi:10.1016/S0013-7952(99)00027-7.
  • Codling, E. E. 2009. Effect of flooding lead arsenate–contaminated orchard soil on growth and arsenic and lead accumulation in rice. Communications in Soil Science and Plant Analysis 40:2800–15. doi:10.1080/00103620903173822.
  • Codling, E. E., R. L. Chaney, and C. E. Green. 2015. Accumulation of lead and arsenic by carrots grown on lead-arsenate contaminated orchard soils. Journal of Plant Nutrition 38:509–25. doi:10.1080/01904167.2014.934477.
  • Codling, E. E., R. L. Chaney, and C. L. Mulchi. 2008. Effects of broiler litter management practices on phosphorus, copper, zinc manganese and arsenic concentrations in Maryland coastal plain soils. Communications in soil Science and Plant Analysis 39:1193–205. doi:10.1080/00103620801925901.
  • Codling, E. E., and T. H. Dao. 2007. Short-term effects of lime, phosphorous, iron amendments of water-extractable lead and arsenic in orchards soils. Communication in Soil Science and Plant Analysis 38:903–19. doi:10.1080/00103620701277783.
  • Codling, E. E., and A. R. Isensee. 2005. Effects of drinking water treatment residue on phosphorus in runoff from poultry litter. Communications in Soil Science and Plant Analysis 36:1263–75. doi:10.1081/CSS-200056922.
  • Codling, E. E., and J. C. Ritchie. 2005. Eastern gamagrass uptake of lead and arsenic from lead arsenate contaminated soil amended with lime and phosphorus. Soil Science 170:413–24. doi:10.1097/01.ss.0000169912.32979.aa.
  • Codling, E. E., and K. L. Rutto. 2014. Stigging nettle (Urtica dioica L.) growth and mineral uptake from lead-arsenate contaminated orchard soils. Journal of Plant Nutrition 37:393–405. doi:10.1080/01904167.2013.859702.
  • Cruz-Romero, M., T. Murphy, M. Morris, E. Cummins, and J. Kerry. 2013. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–97. doi:10.1016/j.foodcont.2013.04.042.
  • Dambies, L., T. Vincent, and E. Guibal. 2002. Treatment of arsenic-containing solutions using chitosan derivatives: Uptake mechanism and sorption performances. Water Research 36 (15):3699–710. doi:10.1016/S0043-1354(02)00108-2.
  • Dash, M., F. Chiellini, R. Ottenbrite, and E. Chiellini. 2011. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science 36:981–1014. doi:10.1016/j.progpolymsci.2011.02.001.
  • Dudka, S., and W. P. Miller. 1999. Permissible concentrations of arsenic and lead in soils based on risk assessment. Water Air Soil Pollution 113:127–32. doi:10.1023/A:1005028905396.
  • Fayiga, A. O., L. Q. Ma, and Q. Zhou. 2007. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil. Environmental Pollution 147:737–42. doi:10.1016/j.envpol.2006.09.010.
  • Giannis, A., A. Nikolaou, D. Pentari, and E. Gidarakos. 2009. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environmental Pollution 157:3379–86. doi:10.1016/j.envpol.2009.06.030.
  • Gonzaga, M. I., J. A. Santos, and L. Q. Ma. 2008. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environmental Pollution 154:212–18. doi:10.1016/j.envpol.2007.10.011.
  • Hadad, H. R., and M. Alejandra Maine. 2007. Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Paraná River floodplain (Argentina). Ecological Engineering 31:251–58. doi:10.1016/j.ecoleng.2007.08.001.
  • Isosaari, P., and M. Sillanpaa. 2012. Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailing. Separation and Purification Technology 87:26–34. doi:10.1016/j.seppur.2011.10.016.
  • Jang, M., J. S. Hwang, and S. I. Choi. 2007. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere 66:8–17. doi:10.1016/j.chemosphere.2006.05.056.
  • Jang, M., J. S. Hwang, S. I. Choi, and J. K. Park. 2005. Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 60:344–54. doi:10.1016/j.chemosphere.2004.12.018.
  • Karimaian, K. A., A. Amrane, H. Kazemian, R. Panahi, and M. Zarrabi. 2013. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Applied Surface Science 284:419–31. doi:10.1016/j.apsusc.2013.07.114.
  • Khodadoust, A. P., K. R. Reddy, and K. Maturi. 2005. Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials 117 (1):15–24. doi:10.1016/j.jhazmat.2004.05.021.
  • Liu, S., F. Zhang, J. Chen, and G. Sun. 2011. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. Journal of Environmental Sciences 23:1544–50. doi:10.1016/S1001-0742(10)60570-0.
  • Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15:1409–16. doi:10.1080/00103628409367568.
  • Naseri, E., A. Reyhanitabar, S. Oustan, A. A. Heydari, and L. Alidokht. 2014. Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma 232–234:547–55. doi:10.1016/j.geoderma.2014.06.009.
  • Ngah, W. S., and S. Fatinathan. 2010. Pb (II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies. Journal of Environmental Sciences 22:338–46. doi:10.1016/S1001-0742(09)60113-3.
  • Oh, S.-Y., M.-K. Yoon, I.-H. Kim, J. Y. Kimand, and W. Bae. 2011. Chemical extraction of arsenic from contaminated soil under subcritical conditions. Science of the Total Environment 409:3066–72. doi:10.1016/j.scitotenv.2011.04.054.
  • Osmond, D. L., D. E. Line, J. A. Gale, R. W. Gannon, C. B. Knott, K. .A. Bartenhagen, M. H. Turner, S. W. Coffey, J. Spooner, J. Wells, J. C. Walker, L. L. Hargrove, M. A. Foster, P. D. Robillardand, and D. W. Lehning. 1995. Watershedss: Water, Soil and Hydro-Environmental Decision Support System. http://h2osparc.wq.ncsu.edu ( Accessed July 5, 2014).
  • Padilla-Rodríguez, A., J. A. Hernández-Viezcas, J. R. Peralta-Videa, J. L. Gardea-Torresdey, O. Perales-Pérez, and F. R. Román-Velázquez. 2015. Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchemical Journal 118:1–11. doi:10.1016/j.microc.2014.07.011.
  • Padilla-Rodríguez, A., O. Perales-Pérez, and F. R. Román-Velázquez. 2014. Removal of As(III) and As(V) oxyanions from aqueous solutions by using chitosan beads with immobilized iron(III). International Journal of Hazardous Material 2:7–17.
  • Pendergrass, A., and D. J. Butcher. 2006. Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard, NC. Microchemical Journal 83:14–16. doi:10.1016/j.microc.2005.12.003.
  • Peryea, F. J. 1991. Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Science Society of America Journal 55:1301–06. doi:10.2136/sssaj1991.03615995005500050018x.
  • Pokhrel, D., and T. Viraraghavan. 2006. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Research 40:549–52. doi:10.1016/j.watres.2005.11.040.
  • Putra, R. S., Y. Ohkawa, and S. Tanaka. 2013. Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Separation Purification Technology 102:34–42. doi:10.1016/j.seppur.2012.09.025.
  • Putra, R. S., and S. Tanaka. 2011. Aluminum drinking water treatment residuals (Al-WTRs) as an entrapping zone for lead in soil by electrokinetic remediation. Separation and Purification Technology 79:208–15. doi:10.1016/j.seppur.2011.02.015.
  • Qian, S., H. Wang, G. Huang, S. Mo, and W. Wei. 2004. Studies of adsorption properties of crosslinked chitosan for vanadium (V), tungsten (VI). Journal of Applied Polymer Science 92:1584–88. doi:10.1002/(ISSN)1097-4628.
  • Rahmani, A., H. Ghaffari, and M. Samadi. 2011. A comparative study on arsenic (III) removal from aqueous solution using nano and micro sized zero-valent iron. Iranian Journal of Environmental Health Science and Engineering 8 (2):157–66.
  • Roy, R. M., S. A. Mazumdar, and S. S. Ray. 2014. Recent advancement in arsenic adsorbents: A mini review. International Journal of Research in Environmental Science and Technology 4 (1):10–15.
  • SAS Institute. 2008. The SAS system for windows. Proc mixed, Release 9.3 edition. Cary, NC: SAS Inst.
  • Shevade, S., and R. G. Ford. 2004. Use of synthetic zeolites for arsenate removal from pollutant water. Water Research 38:3197–204. doi:10.1016/j.watres.2004.04.026.
  • Steel, R. G. D., and H. J. Torrie. 1980. Duncan’s new multiple range test: Principles and procedures of statistic, 187–88. New York: McGraw-Hill.
  • Torres, L. G., R. B. Lopez, and M. Beltran. 2012. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Physics and Chemistry of the Earth 37–39:30–36. doi:10.1016/j.pce.2011.02.003.
  • USEPA (United States Environmental Protection Agency). 2007. Arsenic in drinking water, Office of Ground Water and Drinking Water. http://www.epa.gov//safewater/arsenic.html ( accessed June 2, 2014).
  • USEPA (United States Environmental Protection Agency). 2013. Iron. assessment last revised March 1, 2013. http://www.epa.gov/nrmrl/wswrd/cr/corr_res_iron.html ( accessed July 3, 2014)
  • USEPA (Unites States Environmental Protection Agency). 1998. Integrated risk information system for inorganic arsenic. Carcinogenesis. http://www.epa.gov/iris/subst/0278.htm. ( accessed July 3, 2014)
  • Vaxevanidou, K., N. Papassiopi, and I. Paspaliaris. 2008. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere 70 (8):1329–37. doi:10.1016/j.chemosphere.2007.10.025.
  • Vitela-Rodriguez, A. V., and J. R. Rangel-Mendez. 2013. Arsenic removal by modified activated carbons with iron hydro (oxide) nanoparticles. Journal of Environmental Management 114:225–31. doi:10.1016/j.jenvman.2012.10.004.
  • Wang, G., Y. Zhou, X. Wang, X. Chai, L. Huang, and N. Deng. 2010. Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine-β-cyclodextrin. Journal of Hazardous Materials 184:690–95. doi:10.1016/j.jhazmat.2010.08.094.
  • Yang, J., S. Wang, Z. Lu, J. Yang, and S. Lou. 2009. Converter slag–coal cinder columns for the removal of phosphorous and other pollutants. Journal of Hazardous Materials 168:331–37. doi:10.1016/j.jhazmat.2009.02.024.
  • Yuan, C., and T.-S. Chiang. 2007. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere 67:1533–42. doi:10.1016/j.chemosphere.2006.12.008.
  • Yuan, C., and T.-S. Chiang. 2008. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents. Journal of Hazardous Materials 152:309–15. doi:10.1016/j.jhazmat.2007.06.099.
  • Zeng, M., B. Liao, M. Lei, Y. Zhang, Q. Zeng, and B. Ouyang. 2008. Arsenic removal from contaminated soil using phosphoric acid and phosphate. Journal of Environmental Sciences 20:75–79. doi:10.1016/S1001-0742(08)60011-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.