199
Views
5
CrossRef citations to date
0
Altmetric
Articles

Determination of Plant-Available Nutrients in Two Wood Ashes: The Influence of Combustion Conditions

, , , &
Pages 1664-1674 | Received 22 Oct 2014, Accepted 12 Apr 2016, Published online: 07 Sep 2016

References

  • Adriano, D. C. 2001. Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. New York, USA: Springer-Verlag.
  • Berrueta, V. M., R. D. Edwards, and O. R. Masera. 2008. Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy 33 (5):859–70. doi:10.1016/j.renene.2007.04.016.
  • Brennan, D., B. Coulter, G. Mullen, and R. Courtney. 2008. Evaluation of Mehlich 3 for extraction of copper and zinc from Irish grassland soils and for prediction of herbage content. Communications in Soil Science and Plant Analysis 39:1943–62. doi:10.1080/00103620802134743.
  • Canti, M. G. 2003. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 54:339–61. doi:10.1016/S0341-8162(03)00127-9.
  • Crozier, C. R., J. L. Havlin, G. D. Hoyt, J. W. Rideout, and R. McDaniel. 2009. Three experimental systems to evaluate phosphorus supply from enhanced granulated manure ash. Agronomy Journal 101 (4):880–88. doi:10.2134/agronj2008.0187x.
  • Dahl, O., H. Nurmesniemi, R. Pöykiö, and G. Watkins. 2010. Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Processing Technology 91:1634–39. doi:10.1016/j.fuproc.2010.06.012.
  • Demeyer, A., J. C. Voundi Nkana, and M. G. Verloo. 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview (Review paper). Bioresource Technology 77:287–95. doi:10.1016/S0960-8524(00)00043-2.
  • Eichler-Löbermann, B., K. Schiemenz, M. Makadi, I. Vago, and D. Köppen. 2008. Nutrient cycling by using residues of bioenergy production-II. Effects of biomass ashes on plant and soil parameters. Cereal Research Communications 36:1259–62.
  • Girón, R. P., B. Ruiz, E. Fuente, R. R. Gil, and I. Suárez-Ruiz. 2013. Properties of fly ash from forest biomass combustion. Fuel 114:71–77. doi:10.1016/j.fuel.2012.04.042.
  • Hanzlíček, T., and I. Perná. 2013. Biomass ashes as an additional mineral fertilizer in a relation to the combustion temperature of wood chips and straw. In Proceedings of TOP 2013, eds M. Horvat, L. Ploskuňáková, and I. Onderová, 83–88. Bratislava, Slovakia: STU Bratislava.
  • Iler, R. K. 1979. The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. Chichester, Great Britain: John Wiley and Sons.
  • Jenkins, B. M., L. L. Baxter, T. R. Miles Jr., and T. R. Miles. 1998. Combustion properties of biomass. Fuel Processing Technology 54:17–46. doi:10.1016/S0378-3820(97)00059-3.
  • Kabata-Pendias, A., and H. Pendias. 2001. Trace elements in soils and plants. Boca Raton, USA: CRC Press.
  • Khanna, P. K., R. J. Raison, and R. A. Falkiner. 1994. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. Forest Ecology and Management 66:107–25. doi:10.1016/0378-1127(94)90151-1.
  • Kiekens, L., and A. Cottenie. 1985. Principles of investigations on the nobility and plant uptake of heavy metals. In Chemical methods for assessing bio-available metals in sludges and soils, eds R. Leschber, R. D. Davis, and P. L’Hermite, 32–41. London, Great Britain: Elsevier Applied Science Publishers.
  • Kramer, S. N. 1956. From the tablets of sumer. Indiana Hills, USA: The Falcon’s Wing Press.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2014. A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renewable and Sustainable Energy Reviews 30:580–603. doi:10.1016/j.rser.2013.10.039.
  • Kuba, T., A. Tschöll, C. Artl, K. Meyer, and H. Insam. 2008. Wood ash admixture to organic wastes improves compost and its performance. Agriculture, Ecosystems & Environment 127:43–49. doi:10.1016/j.agee.2008.02.012.
  • Langier-Kuzniarowa, A. 1967. Termogramy mineralów ilastych. Warsawa, Poland: Wydawnictwa Geologiczne.
  • Loide, V., M. Nõges, and J. Rebane. 2005. Assessment of the agrochemical properties of the soil using the extraction solution Mehlich 3 in Estonia. Agronomy Research 3:73–80.
  • Luo, Q., G. L. Chen, Y. Z. Sun, Y. M. Ye, X. C. Qiao, and J. G. Yu. 2013. Dissolution kinetics of aluminum, calcium, and iron from circulating fluidized bed combustion fly ash with hydrochloric acid. Industrial & Engineering Chemistry Research 52:18184–91. doi:10.1021/ie4026902.
  • Mader, P., V. Haber, and J. Zelinka. 1997. Classical dry ashing of biological and agricultural materials: 1. Following the course of removal of organic matrix. Analusis 25:175–83.
  • Mallarino, A., and J. E. Sawyer. 1999. Interpreting Mehlich-3 soil test results. In integrated crop management newsletter, IC-482(2), 11–13. Ames, USA: Iowa State University. Extension.
  • Masiá, A. A., B. J. P. Buhre, R. P. Gupta, and T. F. Wall. 2007. Characterising ash of biomass and waste. Fuel Processing Technology 88 (11–12):1071–81. doi:10.1016/j.fuproc.2007.06.011.
  • Meers, E., G. Du Laing, V. Unamuno, A. Ruttens, J. Vangronsveld, F. M. G. Tack, and M. G. Verloo. 2007. Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141:247–59. doi:10.1016/j.geoderma.2007.06.002.
  • Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15:1409–16. doi:10.1080/00103628409367568.
  • Menzies, N. W., M. J. Donn, and P. M. Kopittke. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution 145:121–30. doi:10.1016/j.envpol.2006.03.021.
  • Moilanen, M., K. Silfverberg, and T. J. Hokkanen. 2002. Effects of wood-ash on the tree growth, vegetation and substrate quality of a drained mire: A case study. Forest Ecology and Management 171:321–38. doi:10.1016/S0378-1127(01)00789-7.
  • Nurmesniemi, H., M. Mäkelä, R. Pöykiö, K. Manskinen, and O. Dahl. 2012. Comparison of the forest fertilizer properties of ash fractions from two power plants of pulp and paper mills incinerating biomass-based fuels. Fuel Processing Technology 104:1–6. doi:10.1016/j.fuproc.2012.06.012.
  • Olanders, B., and B.-M. Steenari. 1995. Characterization of ashes from wood and straw. Biomass and Bioenergy 8 (2):105–15. doi:10.1016/0961-9534(95)00004-Q.
  • Pettersson, A., L.-E. Åmand, and B.-M. Steenari. 2008. Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction. Biomass & Bioenergy 32:236–44. doi:10.1016/j.biombioe.2007.09.006.
  • Pitman, R. M. 2006. Wood ash use in forestry: A review of the environmental impacts. Forestry 79:563–88. doi:10.1093/forestry/cpl041.
  • Pousada-Ferradas, Y., S. Seoane-Labandeira, M. Blanco, and A. Nunez-Delgado. 2011. The effect of aging on element plant availability and bacterial counts of mixtures of wood ash and sewage sludge. Maderas-Ciencia Y Tecnologia 13 (3):307–18. doi:10.4067/S0718-221X2011000300006.
  • Pöykiö, R., H. Nurmesniemi, and R. L. Keiski. 2009. Total and size fractionated concentrations of metals in combustion ash from forest residues and peat. Proceedings of the Estonian Academy of Sciences 58: 247–54. doi:10.3176/proc.2009.4.06
  • Saarsalmi, A., E. Mälkönen, and S. Piirainen. 2001. Effects of wood ash fertilization on forest soil chemical properties. Silva Fennica 35:355–68. doi:10.14214/sf.590.
  • Sharifi, M., M. Cheema, K. McVicar, L. LeBlanc, and S. Fillmore. 2013. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Canadian Journal of Plant Science 93 (6):1209–16. doi:10.4141/cjps2013-168.
  • Skrifvars, B. J., M. Hupa, A. Moilanen, and R. Lundqvist. 1996. Characterization of biomass ashes. In Applications of advanced technology to ash-related problems in boilers, eds. L. Baxter, and R. DeSollar, 383–98. New York: Springer.
  • Steenari, B.-M., L. G. Karlsson, and O. Lindqvist. 1999. Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass & Bioenergy 16:119–36. doi:10.1016/S0961-9534(98)00070-1.
  • Steenari, B.-M., and O. Lindqvist. 1997. Stabilisation of biofuel ashes for recycling to forest soil. Biomass & Bioenergy 13:39–50. doi:10.1016/S0961-9534(97)00024-X.
  • Száková, J., P. Ochecová, T. Hanzlíček, I. Perná, and P. Tlustoš. 2013. Variability of total and mobile element contents in ash derived from biomass combustion. Chemical Papers 67:1376–85. doi:10.2478/s11696-013-0399-4.
  • Vamvuka, D., and D. Zografos. 2004. Predicting the behaviour of ash from agricultural wastes during combustion. Fuel 83:2051–57. doi:10.1016/j.fuel.2004.04.012.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan. 2010. An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011.09.030.
  • World Energy Outlook. 2010. France: International Energy Agency. Available from: http://www.worldenergyoutlook.org/media/weo2010.pdf
  • Xiao, R., X. Chen, F. Wang, and G. Yu. 2011. The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36:244–49. doi:10.1016/j.renene.2010.06.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.