339
Views
15
CrossRef citations to date
0
Altmetric
Articles

Influence of Rhizophagus spp. and Burkholderia seminalis on the Growth of Tomato (Lycopersicon esculatum) and Bell Pepper (Capsicum annuum) under Drought Stress

, &
Pages 1975-1984 | Received 14 May 2015, Accepted 01 Jun 2016, Published online: 02 Aug 2016

References

  • Aebi, H. 1984. Catalase in vitro. Method Enzymology 105:121–26.
  • Aroca, R., P. Vernieri, and J. M. Ruiz-Lozano. 2008. Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany 59:2029–41. doi:10.1093/jxb/ern057.
  • Arvin, P., V. Javad, M. Daryoush, N. Ghorban, and A. Mehdi. 2012. Study of Drought Stress and Plant Growth Promoting Rhizobacteria (PGPR) on Yield, yield components and seed oil content of different cultivars and species of brassica oilseed rape. Annals of Biological Research 3 (9):4444–51.
  • Azcón, R., and J. M. Barea. 2010. Mycorrhizosphere interactions for legume improvement. In Microbes for legume improvement, ed. M. S. Khanf, A. Zaidi, and J. Musarrat, Vol. 2010, 237–71. Vienna, Austria: Springer.
  • Azcón, R., M. Gomez, and R. Tobar. 1996. Physiological and nutritional responses by Lactuca sativato nitrogen sources and mycorrhizal fungi under drought. Biology and Fertility of Soils 22:156–61. doi:10.1007/BF00384448.
  • Barea, J. M., R. Azcón, and C. Azcón-Aguilar. 2005. Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In Microorganisms in soils: Roles in genesis and functions, eds. F. Buscot, and A. Varma, 195–212. Berlin, Heidelberg: Springer-Verlag.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39:205–07. doi:10.1007/BF00018060.
  • Bohnert, H. J., and R. G. Jensen. 1996. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14:89–97. doi:10.1016/0167-7799(96)80929-2.
  • Doubkova, P., E. Vlasáková, and R. Sudova. 2013. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant and Soil 370:149–61. doi:10.1007/s11104-013-1610-7.
  • Duncan, D. B. 1955. Multiple range multiple F tests. Biometrics 11:1–42. doi:10.2307/3001478.
  • Finlay, R. D. 2008. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany 59 (5):1115–26. doi:10.1093/jxb/ern059.
  • Fouad, M. O., E. Abdellatif, B. Laila, and Q. Ahmed. 2014. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought Spanish. Journal of Agricultural Research 12 (3):763–71.
  • Fouad, M. O., A. Essahibi, and A. Qaddoury 2012. Effects of arbuscular mycorrhizal fungi on growth, water relation and antioxidant enzymes activities in Moroccan picholine olive plantlets under water stress. Proc Integrated Soil Fertility Management in Africa: from microbes to markets, Nairobi, Kenya. 99–100.
  • Ghazi Al-Karaki, G., B. McMichael, and J. Zak. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–69. doi:10.1007/s00572-003-0265-2.
  • Goicoechea, N., G. Szalai, M. C. Antolín, M. Sánchez-Díaz, and E. Paldi. 1998. Influence of arbuscular mycorrhizae and Rhizobiumon free polyamines and proline levels in water-stressed alfalfa. Journal of Plant Physiology 153:706–11. doi:10.1016/S0176-1617(98)80224-1.
  • Kavamura, V. N., N. S. Suikinai, J. L. Da Silva, M. P. Marcia, A. A. Luciana, V. Alexander, D. Z. Tiago, G. T. Rodrigo, and I. S. D. M. Fernando Da. 2013. Screening of Brazillian cactirhizobacteria for plant growth promotion under drought. Microbiological Research 168:183–91. doi:10.1016/j.micres.2012.12.002.
  • Kishor, P. K. B., S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, and K. R. S. S. Rao. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science 88:424–38.
  • Kumar, M., and V. Verma. 2009. Bell pepper (Capsicum annuum L.) production in low cost naturally-ventilated polyhouses during winters in the mid hills of India. Acta Horticulturae 807:389–94. doi:10.17660/ActaHortic.2009.807.55.
  • Lee, Y., L. R. Howard, and B. Villalon. 1995. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. Journal of Food Science 60:473–76. doi:10.1111/j.1365-2621.1995.tb09806.x.
  • Lozano, R. J. M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–17. doi:10.1007/s00572-003-0237-6.
  • Lozano, R. J. M., R. Porcel, and R. Aroca. 2006. Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought induced plant genes? New Phytologist 171:693–98. doi:10.1111/nph.2006.171.issue-4.
  • Manoharan, P. T., V. Shanmugaiah, N. Balasubramanian, S. Gomathinayagam, P. S. Mahaveer, and K. Muthuchelian. 2010. Influence of AM fungi on the growth and physiological status of Erythrina Variegate Linn. grown under different water stress conditions European. Journal of Soil Biology 46:151–56. doi:10.1016/j.ejsobi.2010.01.001.
  • Padmavathi, T., Ranjini, R. 2011. Effect of arbuscular mycorrhizal fungi on the growth of Ocimum sanctum and glomalin soil related protein. Res J Biotechnol 6:44–50.
  • Padmavathi, T., D. Rashmi, and S. Swetha. 2015. Effect of Rhizophagus spp. and plant growth-promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian Journal of Botany. doi:10.1007/s40415-015-0144-z.
  • Parida, A. K., and A. B. Das. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60:324–49. doi:10.1016/j.ecoenv.2004.06.010.
  • Phillips, J. M., and D. S. Hayman. 1970. Improve procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158–61. doi:10.1016/S0007-1536(70)80110-3.
  • Polle, A., T. Otter, and F. Seifert. 1994. Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiology 106:53–60.
  • Porcel, R., R. Aroca, R. Azco´n, and J. M. Ruiz-Lozano. 2006. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology 60:389–404. doi:10.1007/s11103-005-4210-y.
  • Prajapati, K., K. D. Yami, and A. Singh. 2008. Plant Growth Promotional Effect of Azotobacter chroococcum, Piriformospora indica and Vermicompost on Rice Plant. Nepal Journal of Science and Technology 9:85–90.
  • Qiu-Dan, N., Z. Ying-Ning, W. U. Qiang-Sheng, and H. Yong-Ming. 2013. Increased tolerance of citrus (Citrus tangerina) seedlings to soil water deficit after mycorrhizal inoculation: Changes in antioxidant enzyme defense system. Notulae Botanicae Horti Agrobotanici 41:524–29.
  • Querejeta, J. I., L. M. Egerton-Warburton, and M. F. Allen. 2003. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. doi:10.1007/s00442-002-1078-2.
  • Rapparini, F., Peñuelas, J.. 2014. Mycorrhizal fungi to alleviate drought stress on plant growth. A: Miransari M. (ed). Use of microbes for the alleviation of soil stresses, Volume 1, 21–42. New York: Springer.
  • Sadashivam, S., and A. Manickam. 2007. Biochemical Methods, Vol. 2010, 3rd ed. India: New Age International Pvt. Ltd.
  • Sanchez, R. M., E. Armada, Y. Muñoz, I. E. G. De Salamone, R. Aroca, and J. M. Ruiz-Lozano. 2011. Azospirillum and arbuscular mycorrhizal colonization enhanced rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology 168:1031–37. doi:10.1016/j.jplph.2010.12.019.
  • Sánchez, R. M., R. Aroca, Y. Muñoz, E. Armada, R. Polón, and J. M. Ruiz-Lozano. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology 167:862–69. doi:10.1016/j.jplph.2010.01.018.
  • Selvakumar, G., R. Reetha, and P. Thamizhiniyan. 2013. The PGPR as Elicitors of Plant Defence Mechanisms and Growth Stimulants on Tomato (Lycopersicum esculentum Mill.). Botany Research International 6 (2):47–55.
  • Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis, 3rd ed. New York: Academic Press.
  • Solanki, M. K., S. Kumar, A. K. Pandey, S. Srivastava, R. K. Singh, P. L. Kashyap, A. K. Srivastava, and D. K. Arora. 2012. Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology 22 (2):203–17. doi:10.1080/09583157.2011.649713.
  • Sun, Y. P., T. Unestam, S. D. Lucas, K. J. Johanson, L. Kenne, and R. D. Finlay. 1999. Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other micro-organisms. Mycorrhiza 9:137–14. doi:10.1007/s005720050298.
  • Vallino, M., D. Greppi, M. Novero, P. Bonfante, and E. Lupotto. 2009. Rice root colonization by mycorrhizal and endophytic fungi in aerobic soil. Annals of Applied Biology 154:195–204. doi:10.1111/j.1744-7348.2008.00286.x.
  • Wu, Q. S., and R. X. Xia. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163:417–25. doi:10.1016/j.jplph.2005.04.024.
  • Yaghoubian, Y., M. G. Ebrahim, P. Hemmatollah, E. Ezatollah, F. Vali, K. D. Hossein, A. Varma, and H. H. Mimi. 2014. Effect of Glomus mosseae and Piriformospora indica on Growth and Antioxidant Defense Responses of Wheat Plants under Drought Stress. Agricultural Research 3 (3):239–45. doi:10.1007/s40003-014-0114-x.
  • Yooyongwech, S., N. Phaukinsang, S. Cha-Um, and K. Supaibulwatana. 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69:285–93. doi:10.1007/s10725-012-9771-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.