411
Views
20
CrossRef citations to date
0
Altmetric
Articles

Enhancement of Growth and Yield of Glycine max Plants with Inoculation of Phosphate Solubilizing Fungus Aspergillus niger K7 and Biochar Amendment in Soil

, &
Pages 2334-2347 | Received 18 Feb 2016, Accepted 17 May 2016, Published online: 20 Oct 2016

References

  • Ahmad, N., and K. K. Jha. 1968. Solubilization of rock phosphate by microorganism isolated from Bihar soil. Canadian Journal of Applied Microbiology 14:89–95.
  • Allen, S. C. 1989. Chemical analysis of ecological materials, Steward, 2nd ed., 368. Oxford, UK: Blackman Scientific.
  • Anders, E., A. Watzinger, F. Rempt, B. Kitzler, B. Wimmer, F. Zehetner, K. Stahar, S. Zechmeister- Botenstern, and G. Soja. 2013. Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agriculture and Food Science 22:404–23.
  • AOAC. 1965. Official methods of analysis, 10th ed. Washington, DC: Association of Official Agricultural Chemist(s).
  • Arief, M., F. Jalal, M. T. Jan, D. Muhammad, and R. S. Quilliam. 2015. Incorporation of biochar and legumes into the summer gap: Improving productivity of cereal-based cropping systems in Pakistan. Agroecology and Sustinable Food System 39:391–98. doi:10.1080/21683565.2014.996696.
  • Barroso, C. B., and E. Nahas. 2005. The status of soil phosphate fraction and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology 29:73–83. doi:10.1016/j.apsoil.2004.09.005.
  • Basso, A. S., F. E. Miguez, D. A. Laird, R. Horton, and M. Westgate. 2013. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 5:132–43. doi:10.1111/gcbb.12026.
  • Calvo, A. M., R. A. Wilson, J. W. Bok, and N. P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews 66:447–59. doi:10.1128/MMBR.66.3.447-459.2002.
  • Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34:33–41. doi:10.1016/j.apsoil.2005.12.002.
  • Dastan, S., M. Siavoshi, D. Zakavi, A. Ghanbaria-malidarreh, R. Yadi, E. Ghorbannia Delavar, and A. R. Nasiri. 2012. Application of nitrogen and silicon rates on morphological and chemical lodging related characteristics in rice (Oryza sativa L.) north of Iran. Journal of Agricultural Science 4:12–18.
  • Deenik, J., A. Diarra, G. Uehara, S. Campbell, Y. Sumiyoshi, and M. Antal Jr. 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Science 176:336–45. doi:10.1097/SS.0b013e31821fbfea.
  • Glaser, B., J. Lehmann, and W. Zech. 2009. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils 35:219–30. doi:10.1007/s00374-002-0466-4.
  • Iman, M., and E. I. Azouni. 2008. Effect of phosphate solubilizing fungi on growth and nutrient uptake of soyabean plants. Journal of Applied Science Research 4 (6):592–98.
  • Jain, R., J. Saxena, and V. Sharma. 2010. The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil–plant system. Applied Soil Ecology 46:90–94. doi:10.1016/j.apsoil.2010.06.008.
  • Jain, R., J. Saxena, and V. Sharma. 2012. Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from agricultural soil of semi-arid region. Annals of Microbiology 62:725–35. doi:10.1007/s13213-011-0312-8.
  • Jeffery, S., F. Verheijen, M. Van Der Velde, and A. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems and Environment 144 (1):175–87. doi:10.1016/j.agee.2011.08.015.
  • Kanse, O. S., M. Whitelaw-Weckert, T. A. Kadam, and H. J. Bhosale. 2014. Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the Neem rhizosphere. Annals of Microbiology. 65(1): 85–93.
  • Koeing, R. A., and C. R. Johnson. 1942. Colorimetric determination of phosphorous in biological materials. Industrial & Engineering Chemistry Analytical Edition 14:155–56. doi:10.1021/i560102a026.
  • Kucey, R. M. N. 1983. Phosphate solubilizing bacteria and fungi in various cultivated and vergin Alberta soils. Canadian Journal of Soil Science 63:671–78. doi:10.4141/cjss83-068.
  • Lehmann, C. J., and M. Rondon. 2006. Bio-char soil management on highly-weathered soils in the tropics. In Biological approaches to sustainable soil systems, ed. N. T. Uphoff. Boca Raton, FL: CRC Press.
  • Linu, M. S., J. Stephen, and M. S. Jisha. 2009. Phosphate solubilizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.)Walp.). International Journal of Agriculture Research 4:79–87. doi:10.3923/ijar.2009.79.87.
  • Lorito, M., S. L. Woo, G. E. Harman, and E. Monte. 2010. Translational research on Trichoderma: From omics to the field. Annual Review of Phytopathology 48:395–417. doi:10.1146/annurev-phyto-073009-114314.
  • Lucas Garcia, J. A., C. Barbas, A. Probanza, M. L. Barrientos, and F. J. Gutierrez Manero. 2001. Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochemical Analysis 12:305–11. doi:10.1002/pca.596.
  • Minaxi, M., L. Nain, R. C. Yadav, and J. Saxena. 2012. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology 59:124–35. doi:10.1016/j.apsoil.2011.08.001.
  • Minaxi, M., and J. Saxena. 2010. Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semi arid region of Rajasthan. BioControl 55 (6):799–810. doi:10.1007/s10526-010-9292-z.
  • Mittal, V., O. Singh, H. Nayyar, J. Kaur, and Z. Tewari. 2008. Stimulatory effect of phosphate- solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. Cv. GPF2). Soil Biology and Biochemistry 40:718–27. doi:10.1016/j.soilbio.2007.10.008.
  • Mohammadi, K., and Y. Sohrabi. 2012. Bacterial Biofertilizers for sustainable crop production: A review. ARPN Journal of Agricultural and Biological Science 7:307–16.
  • Mukherjee, A., V. Achal, and M. S. Reddy. 2010. In search of a sustainable binder in building materials. Annals of proc Indian National Academy of Engineering 7:41–51.
  • Murphy, J., and H. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Narsian, T. V., and H. H. Patel. 2009. Relationship of physiological properties of rhizosphere soils with native population of mineral phosphate solubilizing fungi. Indian Journal of Microbiology 49:60–67. doi:10.1007/s12088-009-0001-5.
  • Nguyen, C., W. Yan, F. Le Tacon, and F. Lapeyrie. 1992. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizalfungus Laccariabicolor (Maire) P.D Orton. Plant and Soil 143:193–99. doi:10.1007/BF00007873.
  • Nigussie, A., E. Kissi, M. Misganaw, and G. Ambaw. 2012. Effect of biochar application on soil Properties and nutrient uptake of Lettuces (Lactuca sativa) grown in chromium polluted soils. American Eurasian Journal of Agriculture and Environment Science 12 (3):369–76.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean 1954. Estimation of available P in soil by extraction with sodium bicarbonate. USDA Circulation no. 939, US Government Printing Office, Washington, DC, 19–27.
  • Osorio, N. W., and M. Habte. 2001. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Resource Management 15 (3):263–74. doi:10.1080/15324980152119810.
  • Raaijmakers, J. M., T. C. Paulitz, C. Steinberg, C. Alabouvette, and Y. Moenne-Loccoz. 2009. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321:341–61. doi:10.1007/s11104-008-9568-6.
  • Ram, H., G. Singh, N. Aggarwal, and J. Kaur. 2011. Soybean (Glycine max) growth, productivity and water use under different sowing methods and seeding rates in Punjab. Indian Journal of Agronomy 56 (4):377–80.
  • Rudresh, D. L., M. K. Shivprakash, and R. D. Prasad. 2005. Effect of combined application of rhizobium, phosphate solubilizing bacterium and Trichoderma spp. On growth, nutrition uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology 28:139–46. doi:10.1016/j.apsoil.2004.07.005.
  • Saxena, J., G. Rana, and M. Pandey. 2013. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae 162:351–56. doi:10.1016/j.scienta.2013.08.002.
  • Schnitzer, S. A., J. N. Klironomos, and J. HilleRisLambers. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303. doi:10.1890/10-0773.1.
  • Singh, H., and M. S. Reddy. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology 47:30–34. doi:10.1016/j.ejsobi.2010.10.005.
  • Singh, S., and K. K. Kapoor. 1994. Solubilization of insoluble phosphates by bacteria isolated from different sources. Environmental Ecology 12:51–55.
  • Solaiman, Z. M., P. Blackwell, L. K. Abbott, and P. Storer. 2010. Direct and residual effect of biochar application on mycorhizal root colonization, growth and nutrition of wheat. Australian Journal of Soil Research 48:546–54. doi:10.1071/SR10002.
  • Son, T. T. N., V. Van Thu, and H. Kobayashi. 2003. Effect of organic and bio fertilizer application on rice -soybean -rice cropping systems. In the proceedings of the final workshop of JIRCAS Mekong Delta Project - “Development of new technologies and their practice for sustainable farming systems in the Mekong Delta,” 65–81. Can Tho, Vietnam: Can Tho University.
  • Song, R. 2012. Growth promotion of maize by Soybean root exudates. Agricultural Research Communication Centre 35 (3):226–30.
  • Soybean Processors Association of India (SOPA). 2013. Soybean production could go up 7-10%. Indore, India: SOPA.
  • Thakur, D., R. Kaushal, and V. Shyam. 2014. Phosphate Solubilising Microorganisms: Role in phosphorus nutrition of crop plants- A Review. Agricultural Research Communication Centre 35 (3):159–71.
  • Van Zwieten, L., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327:235–46. doi:10.1007/s11104-009-0050-x.
  • Vasudevan, P., M. S. Reddy, S. Kavitha, P. Velusamy, R. S. David PaulRaj, S. M. Purushothaman, V. Brindha Priyadarisini, S. Bharathkumar, J. W. Kloepper, and S. S. Gnanamanickam. 2002. Role of biological preparations in enhancement of rice seedling growth and grain yield. Current Science 83:1140–43.
  • Vikram, A., and H. Hamzehzarghani. 2008. Effect of phosphate solubilizingbacteria on nodulation and growth parameters of greengram (Vigna radiata). Research Journal of Microbiology 3:62–72. doi:10.3923/jm.2008.62.72.
  • Walkley, A., and I. A. Black. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37:29–38. doi:10.1097/00010694-193401000-00003.
  • Wang, J., Z. Xiong, and Y. Kuzyakov. 2015. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 8 (3):512–23. doi:10.1111/gcbb.12266.
  • Wang, T., M. Camps Arbestain, M. Hedley, and P. Bishop. 2012. Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Organic Geochemistry 51:45–54. doi:10.1016/j.orggeochem.2012.07.009.
  • Whitelaw, M. A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69:99–151.
  • Xiao, C. Q., R. A. Chi, X. H. Li, M. Xia, and Z. W. Xia. 2011. Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Applied Biochemistry and Biotechnology 165:719–27. doi:10.1007/s12010-011-9290-3.
  • Xiao, C. Q., H. X. Zhang, Y. J. Fang, and R. A. Chi. 2013. Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Applied Biochemistry and Biotechnology 169:123–33. doi:10.1007/s12010-012-9967-2.
  • Zayed, G., and H. A. Motaal. 2005. Bioactive compost from rice straw enriched with rock phosphate and their effect on the phosphorus nutrition and microbial community in rhizosphere of cowpea. Bioresource Technology 96:929–35. doi:10.1016/j.biortech.2004.08.002.
  • Zhao, R., N. Coles, Z. Kong, and J. Wu. 2015. Effect of aged and fresh biochars on soil acidity under different incubation condition. Soil and Tillage Research 146:133–38. doi:10.1016/j.still.2014.10.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.