288
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of Salinity on the Transformation of Wheat Straw and Microbial Communities in a Saline Soil

, , , &
Pages 1455-1461 | Received 09 Oct 2015, Accepted 19 Jul 2017, Published online: 25 Sep 2017

References

  • Badia, D., C. Marti, and A. J. Badia. 2013. Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Science of Total Environment 465:233–39. doi:10.1016/j.scitotenv.2013.04.006.
  • Bertrand, I., O. Delfosse, and B. Mary. 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry 39:276–88. doi:10.1016/j.soilbio.2006.07.016.
  • Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98:371–76. doi:10.1097/00010694-196412000-00004.
  • Chowdhury, N., P. Marschner, and R. Burns. 2011. Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant and Soil 344:241–54. doi:10.1007/s11104-011-0743-9.
  • Kamble, P. N., V. B. Gaikwad, S. R. Kuchekar, and E. Bååth. 2014. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). European Journal of Soil Biology 65:87–95. doi:10.1016/j.ejsobi.2014.10.005.
  • Khan, K., S. A. Gattingerb, F. Bueggerb, M. Schloterb, and R. G. Joergensen. 2008. Microbial use of organic amendments in saline soils monitored by changes in the 13C/12C ratio. Soil Biology and Biochemistry 40:1217–24. doi:10.1016/j.soilbio.2007.12.016.
  • King, G. M. 2011. Enhancing soil carbon storage for carbon remediation: Potential contributions and constraints by microbes. Trends in Microbiology 19 (2):75–84. doi:10.1016/j.tim.2010.11.006.
  • Lu, R. K. 2000. Soil agro-chemical analysis. Beijing, China: China Agricultural Scientech Press.
  • Lundmark, A., and B. Olofsson. 2007. Chloride deposition and distribution in soils along a deiced highway-assessment using difference methods of measurement. Water Air & Soil Pollution 182:173–85. doi:10.1007/s11270-006-9330-8.
  • Martín-Olmedo, P., and R. M. Rees. 1999. Short-term N availability in response to dissolved-organic-carbon from poultry manure, alone or in combination with cellulose. Biology and Fertility of Soils 29:386–93. doi:10.1007/s003740050569.
  • Muhammad, S., T. Müller, and R. G. Joergensen. 2006. Decomposition of pea and maize straw in Pakistani soils along a gradient in salinity. Biology and Fertility of Soils 43 (1):93–101. doi:10.1007/s00374-005-0068-z.
  • Nelson, P. N., J. N. Ladd, and J. M. Oades. 1996. Decomposition of 14C labelled plant material in salt-affected soil. Soil Biology and Biochemistry 28:433–41. doi:10.1016/0038-0717(96)00002-8.
  • Pankhurst, C. E., S. Yu, B. G. Hawke, and B. D. Harch. 2001. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biology and Fertility of Soils 33:204–17. doi:10.1007/s003740000309.
  • Pathak, H., and D. L. N. Rao. 1998. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biology and Biochemistry 30:695–702. doi:10.1016/S0038-0717(97)00208-3.
  • Qadir, M., and S. Schubert. 2002. Degradation process and nutrient constraints in sodic soils. Land Degradation and Development 19:275–94. doi:10.1002/ldr.504.
  • Rasul, G., A. Appahn, T. Müller, and R. G. Joergensen. 2006. Salinity induced changes in the microbial use of sugarcane filter cake added to soil. Applied Soil Ecology 31 (1–2):1–10. doi:10.1016/j.apsoil.2005.04.007.
  • Rousk, J., P. C. Brookes, and E. Bååth. 2009. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralization. Applied Environment Microbiology 75:1589–96. doi:10.1128/AEM.02775-08.
  • Setia, R., P. Rengasamy, and P. Marschner. 2014. Effect of mono- and divalent cations on sorption of water-extractable organic carbon and microbial activity. Biology and Fertility of Soils 50:727–34. doi:10.1007/s00374-013-0888-1.
  • Wang, Q., T. He, S. Wang, and L. Liu. 2013. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology 178–179:152–60. doi:10.1016/j.agrformet.2013.04.021.
  • Wichern, J., F. Wichern, and R. G. Joergensen. 2006. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–08. doi:10.1016/j.geoderma.2006.08.001.
  • Zhang, H. X., L. J. Irving, C. McGill, C. Matthew, D. W. Zhou, and P. Kemp. 2010. The effects of salinity and osmotic stress on barley germination rate: Sodium as an os-motic regulator. Annals of Botany 106:1027–35. doi:10.1093/aob/mcq204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.