155
Views
6
CrossRef citations to date
0
Altmetric
Articles

Integrating soil analyses with frameworks for ecosystem services and organizational hierarchy of soil systems

, , , , , & show all
Pages 1835-1843 | Received 12 Mar 2018, Accepted 07 May 2018, Published online: 01 Jun 2018

References

  • Adhikari, K., and A. Hartemink. 2016. Linking soils to ecosystem services – A global review. Geoderma 262:101–11. doi:10.1016/j.geoderma.2015.08.009.
  • Bai, Y., C. Zhuang, Z. Ouyang, H. Zheng, and B. Jiang. 2011. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecological Complexity 8:177–83. doi:10.1016/j.ecocom.2011.01.007.
  • Baveye, P., J. Baveye, and J. Gowdy. 2016. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science 4(Article):41. doi:10.3389/fenvs.2016.00041.
  • Braat, L. C., and R. de Groot. 2012. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosystem Services 1:4–15. doi:10.1016/j.ecoser.2012.07.011.
  • Brady, M. V., K. Hedlund, R. Cong, L. Hemerik, S. Hotes, S. Machado, L. Mattsson, E. Schulz, and I. K. Thomsen. 2015. Valuing supporting soil ecosystem services in agriculture: A natural capital approach. Agronomy Journal 107 (5):1809–21. doi:10.2134/agronj14.0597.
  • Brown, T. C., J. C. Bergstrom, and J. B. Loomis. 2007. Defining, valuing and providing ecosystem goods and services. Natural Resources Journal 47(2):329–76.
  • Cardenas, L. M., A. Chabbi, and C. Hawes. 2016. The contribution of farm-scale experiments to the understanding of soil processes and implications for ecosystem services. European Journal of Soil Science 67:359. doi:10.1111/ejss.12360.
  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253–60. doi:10.1038/387253a0.
  • Dijkerman, J. C. 1974. Pedology as a science: The role of data, models and theories in the study of natural soil systems. Geoderma 11:73–93. doi:10.1016/0016-7061(74)90009-3.
  • Dominati, E., A. Mackay, S. Green, and M. Patterson. 2014. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecological Economics 100:119–29. doi:10.1016/j.ecolecon.2014.02.008.
  • Fu, B., Y. Liu, Y. Lű, C. He, Y. Zeng, and B. Wu. 2011. Assessing the soil erosion control service of ecosystem change in the Loess Plateau of China. Ecological Complexity 8:284–93. doi:10.1016/j.ecocom.2011.07.003.
  • Gardi, C., G. Visiolo, F. D. Conti, M. Scotti, C. Menta, and A. Bodini. 2016. High nature value farmland: Assessment of soil organic carbon in Europe. Frontiers in Environmental Science 4(Article):47. doi:10.3389/fenvs.2016.00047.
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In Methods of soil analysis, A. Klute. ed., 383–411. Part 1. 2nd ed. Madison, WI: Agron. Monogr. 9. ASA and SSSA.
  • Gray, J. M., T. F. Bishop, and X. Yang. 2015. Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia. Soil Resources 53 (1):24–42. doi:10.1071/SR13306.
  • Hoosbeek, M. R., and R. B. Bryant. 1992. Towards the quantative modeling of pedogenesis – A review. Geoderma 55:183–210. doi:10.1016/0016-7061(92)90083-J.
  • Jandl, R., M. Rodeghiero, C. Martinez, M. F. Cotrufo, F. Bampa, B. van Wesemael, R. B. Harrison, I. A. Guerrini, D. deB Richter, and L. Rustad. 2014. Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment 468:376–83. doi:10.1016/j.scitotenv.2013.08.026.
  • Jónsson, J. Ö. G., and B. Davíðsdóttir. 2016. Classification and valuation of soil ecosystem services. Agricultural Systems 145:24–38. doi:10.1016/j.agsy.2016.02.010.
  • Kempen, B., D. J. Brus, and J. Stoorvogel. 2011. Three-dimensional mapping of soil organic matter content using soil type-specific depth functions. Geoderma 162:107–23. doi:10.1016/j.geoderma.2011.01.010.
  • Kenward, M. G., and J. H. Roger. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–97. doi:10.2307/2533558.
  • Kumar, S., R. Lal, D. Liu, and R. Rafiq. 2013. Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA. Journal of Geographical Sciences 23 (2):280–96. doi:10.1007/s11442-013-1010-1.
  • Lawrence, C. R., J. W. Harden, X. Xu, M. S. Schulz, and S. E. Trumbore. 2015. Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA. Geoderma 247-248:73–87. doi:10.1016/j.geoderma.2015.02.005.
  • Li, M., X. Zhang, G. Pang, and F. Han. 2013. The estimation of soil organic carbon distribution and storage in a small catchment area of the loess plateau. Catena 101:11–16. doi:10.1016/j.catena.2012.09.012.
  • Liu, S., N. An, J. Yang, S. Dong, C. Wang, and Y. Yin. 2015. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. Catena 133:137–44. doi:10.1016/j.catena.2015.05.010.
  • McBratney, A., D. J. Field, and A. Koch. 2014. The dimensions of soil security. Geoderma 213:203–13. doi:10.1016/j.geoderma.2013.08.013.
  • Mikhailova, E. A., A. H. Altememe, A. A. Bawazir, R. D. Chandler, M. P. Cope, C. J. Post, R. Y. Stiglitz, H. A. Zurqani, and M. A. Schlautman. 2016. Comparing soil carbon estimates in glaciated soils at a farm scale using geospatial analysis of field and SSURGO data. Geoderma 281:119–26. doi:10.1016/j.geoderma.2016.06.029.
  • Mikhailova, E. A., H. M. Van Es, R. F. Lucey, S. D. DeGloria, S. J. Schwager, and C. J. Post. 1996. Soil characterization data for selected pedons from the Willsboro Farm, Essex County, New York. 14853. Ithaca, New York: Research Series R96-5. Department of Soil, Crop, and Atmospheric Sciences, Cornell University.
  • Niu, X., B. Wang, S. Liu, C. Liu, W. Wei, and P. E. Kauppi. 2012. Economic assessment of forest ecosystem services in China: Characteristics and implications. Ecological Complexity 11:1–11. doi:10.1016/j.ecocom.2012.01.001.
  • Obi, J., P. Ogban, U. Ituen, and B. Udoh. 2014. Development of pedotransfer functions for coastal plain soils using terrain attributes. Catena 123:252–62. doi:10.1016/j.catena.2014.08.015.
  • Olson, K., and M. Al-Kaisi. 2015. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena 125:33–37. doi:10.1016/j.catena.2014.10.004.
  • Orton, T., M. Pringle, and T. Bishop. 2016. A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma 262:174–86. doi:10.1016/j.geoderma.2015.08.013.
  • Pachepsky, Y., and R. L. Hill. 2017. Scale and scaling in soils. Geoderma 287:4–30. doi:10.1016/j.geoderma.2016.08.017.
  • Roudier, P., C. Hedley, and C. Ross. 2015. Prediction of volumetric soil organic carbon from field-moist intact soil cores. European Journal of Soil Science 66 (4):651–60. doi:10.1111/ejss.2015.66.issue-4.
  • Rumpel, C., and I. Kogel-Knabner. 2011. Deep soil organic matter – A key but poorly understood component of terrestrial C cycle. Plant and Soil 338:143–58. doi:10.1007/s11104-010-0391-5.
  • Sandhu, H. S., S. D. Wratten, and R. Cullen. 2010. The role of supporting ecosystem services in conventional and organic arable farmland. Ecological Complexity 7:302–10. doi:10.1016/j.ecocom.2010.04.006.
  • Sinoga, J. D. R., S. Pariente, A. R. Diaz, and J. F. M. Murillo. 2012. Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena 94:17–25. doi:10.1016/j.catena.2011.06.004.
  • Song, X., D. J. Brus, F. Liu, D. Li, Y. Zhao, J. Yang, and G. Zhang. 2016. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma 261:11–22. doi:10.1016/j.geoderma.2015.06.024.
  • Statistical Analysis System Institute Inc. (SAS Institute Inc.). 2016. JMP® Software, version 12. Cary, NC: SAS Institute.
  • Stockmann, U., M. A. Adams, J. W. Crawford, D. J. Field, N. Henakaarchchi, M. Jenkins, B. Minasny, A. B. McBratney, V. De Courcelles, K. Singh, et al. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture Ecosystems and Environment 164:80–99. doi:10.1016/j.agee.2012.10.001.
  • Tiessen, H., E. Cuevas, and P. Chacon. 1994. The role of soil organic matter in sustaining soil fertility. Nature 371:783–85. doi:10.1038/371783a0.
  • Trumbore, S. E. 1997. Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences 94 (16):8284–91. doi:10.1073/pnas.94.16.8284.
  • Weissert, L., J. Salmond, and L. Schwendenmann. 2016. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma 271:80–90. doi:10.1016/j.geoderma.2016.02.014.
  • Wells, T., G. R. Hancock, C. Dever, and D. Murphy. 2012. Prediction of vertical soil organic carbon profiles using soil properties and environmental tracer data at an untilled site. Geoderma 170:337–46. doi:10.1016/j.geoderma.2011.11.006.
  • Wiesmeier, M., P. Spörlein, U. Geuß, E. Hangen, S. Haug, A. Reischl, B. Schilling, M. Lützow, and I. Kögel-Knabner. 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology 18 (7):2233–45. doi:10.1111/j.1365-2486.2012.02699.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.