343
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Salinity tolerance and sodium localization in mycorrhizal strawberry plants

&
Pages 2782-2792 | Received 10 Jul 2018, Accepted 13 Sep 2018, Published online: 29 Oct 2018

References

  • Alenazi, M. , D. Egamberdieva , and P. Ahmad . 2015. Arbuscular mycorrhizal fungi mitigates NaCl induced adverse effects on Solanum lycopersicum L. Pakistan Journal of Botany 47:327–40.
  • Alkan Torun, A. , Y. Aka Kacar , B. Bicen , N. Erdem , and S. Serce . 2014. In vitro screening of octoploid Fragaria chiloensis and Fragaria virginiana genotypes against iron deficiency. Turkish Journal of Agriculture and Forestry 38:169–79. doi:10.3906/tar-1305-83.
  • Al-Karaki, G. N. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54. doi:10.1007/s005720000055.
  • Bruning, B. , and J. Rozema . 2013. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany 92:134–43. doi:10.1016/j.envexpbot.2012.09.001.
  • Deinleinl, U. , A. B. Stephanl , T. Horie , W. Luo , G. Xu , and J. I. Schroeder . 2014. Plant salt tolerance mechanisms. Trends in Plant Science 19:371–79. doi:10.1016/j.tplants.2014.02.001.
  • Estrada, B. , R. Aroca , F. J. M. Maathuis , J. M. Barea , and J. M. Ruiz-Lozano . 2013. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell and Environment 36:1771–82. doi:10.1111/pce.12082.
  • Evelin, H. , R. Kapoor , and B. Giri . 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany 104:1263–80. doi:10.1093/aob/mcp251.
  • Garg, N. , and R. Pandey . 2015. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25:165–80. doi:10.1007/s00572-014-0600-9.
  • Giri, B. , R. Kapoor , and K. G. Mukerji . 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology 54:753–60. doi:10.1007/s00248-007-9239-9.
  • Hammer, E. C. , H. Nasr , J. Pallon , P. A. Olsson , and H. Wallander . 2011. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–29. doi:10.1007/s00572-010-0316-4.
  • Hasegawa, P. M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92:19–31. doi:10.1016/j.envexpbot.2013.03.001.
  • He, Z. , and Z. Huang . 2013. Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress. The Journal of Microbiology 51:100–04. doi:10.1007/s12275-013-2423-3.
  • Jamalian, S. , M. Gholami , and M. Esna-Ashari . 2013. Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology 25:291–99.
  • James, R. A. , C. Blake , C. S. Byrt , and R. Munns . 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany 62:2939–47. doi:10.1093/jxb/err003.
  • Krishnamurthy, P. , K. Ranathunge , S. Nayak , L. Schreiber , and M. K. Mathew . 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany 62:4215–28. doi:10.1093/jxb/err135.
  • Latef, A. A. H. A. , and H. Chaoxing . 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation 33:644–53. doi:10.1007/s00344-014-9414-4.
  • Munns, R. 2005. Genes and salt tolerance: Bringing them together. New Phytologist 167:645–63. doi:10.1111/j.1469-8137.2005.01487.x.
  • Pandey, R. , and N. Garg . 2017. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza 27:669–82. doi:10.1007/s00572-017-0778-8.
  • Parida, A. K. , and A. B. Das . 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60:324–49. doi:10.1016/j.ecoenv.2004.06.010.
  • Phillips, J. M. , and D. S. Hayman . 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:58–161. doi:10.1016/S0007-1536(70)80110-3.
  • Porcel, R. , R. Aroca , and J. M. Ruiz-Lozano . 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A Review. Agronomy for Sustainable Development 32:181–200. doi:10.1007/s13593-011-0029-x.
  • Porra, R. J. , W. A. Thompson , and P. E. Kriedemann . 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica Et Biophysica Acta (BBA) - Bioenergetics 975:384–94. doi:10.1016/S0005-2728(89)80347-0.
  • Ruiz-Lozano, J. M. , R. Porcel , C. Azcon , and R. Aroca . 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany 63:4033–44. doi:10.1093/jxb/ers126.
  • Santander, C. , R. Aroca , J. M. Ruiz-Lozano , J. Olave , P. Cartes , F. Borie , and P. Cornejo . 2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:639–57. doi:10.1007/s00572-017-0784-x.
  • Schreiber, L. , K. Hartmann , M. Skrabs , and J. Zeier . 1999. Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. Journal of Experimental Botany 50:1267–80.
  • Sheng, M. , M. Tang , F. Zhang , and Y. Huang . 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–30. doi:10.1007/s00572-010-0353-z.
  • Sinclair, G. , C. Charest , Y. Dalpe , and S. Khanizadeh . 2014. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agricultural and Food Science 23:146–58. doi:10.23986/afsci.9552.
  • Smith, S. E. , and D. J. Read . 2008. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In Mycorrhizal symbiosis , 3rd ed., 145–48. London: Academic Press.
  • Takaku, Y. , H. Suzuki , I. Ohta , D. Ishii , Y. Muranaka , M. Shimomura , and T. Hariyama . 2013. A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum. Proceedings of the National Academy of Sciences USA 110:7631–35. doi:10.1073/pnas.1221341110.
  • Takaku, Y. , H. Suzuki , I. Ohta , T. Tsutsui , H. Matsumoto , M. Shimomura , and T. Hariyama . 2015. A ‘NanoSuit’ surface shield successfully protects organisms in high vacuum: Observations on living organisms in an FE-SEM. Proceedings of the Royal Society of London B 282:20142857. doi:10.1098/rspb.2014.2857.
  • Talaat, N. B. , and B. T. Shawky . 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany 98:20–31. doi:10.1016/j.envexpbot.2013.10.005.
  • Van Soest, P. U. , and R. H. Wine . 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal-Association of Official Analytical Chemists 50:50–55.
  • Wilde, P. , A. Manal , M. Stodden , E. Sieverding , U. Hilderbrandt , and H. Bothe . 2009. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology 11:1548–61. doi:10.1111/j.1462-2920.2009.01882.x.
  • Xue, Z. , S. Zhao , H. Gao , and S. Sun . 2014. The salt resistance of wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) under NaCl stress is mainly determined by Na+ distribution in the plant. Acta Physiologiae Plantarum 36:61–70. doi:10.1007/s11738-013-1386-7.
  • Zhang, L. , S. Kitanishi , Y. Uno , M. Kanechi , and N. Inagaki . 2009. Selection of salt-tolerant strawberry cultivars by assessing germination under excess NaCl and seawater conditions. Horticulture Environment and Biotechnology 50:451–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.